
 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 1

MC5301: ADVANCED DATA STRUCTURES AND ALGORITHMS

COURSE OBJECTIVES

 Understand and apply linear data structures-List, Stack and Queue.

 Understand the graph algorithms.

 Learn different algorithms analysis techniques.

 Apply data structures and algorithms in real time applications

 Able to analyze the efficiency of algorithm.

SYLLABUS

UNIT I LINEAR DATA STRUCTURES 9
Introduction - Abstract Data Types (ADT) – Stack – Queue – Circular Queue - Double Ended

Queue - Applications of stack – Evaluating Arithmetic Expressions - Other Applications -

Applications of Queue - Linked Lists - Singly Linked List - Circularly Linked List - Doubly

Linked lists – Applications of linked list – Polynomial Manipulation.

UNIT II NON-LINEAR TREE STRUCTURES 9

Binary Tree – expression trees – Binary tree traversals – applications of trees – Huffman

Algorithm - Binary search tree - Balanced Trees - AVL Tree - B-Tree - Splay Trees – Heap-

Heap operations- -Binomial Heaps - Fibonacci Heaps- Hash set.

UNIT III GRAPHS 9

Representation of graph - Graph Traversals - Depth-first and breadth-first traversal -

Applications of graphs - Topological sort – shortest-path algorithms - Dijkstra‟s algorithm –

Bellman-Ford algorithm – Floyd's Algorithm - minimum spanning tree – Prim's and Kruskal's

algorithms.

UNIT IV ALGORITHM DESIGN AND ANALYSIS 9

Algorithm Analysis – Asymptotic Notations - Divide and Conquer – Merge Sort – Quick Sort -

Binary Search - Greedy Algorithms – Knapsack Problem – Dynamic Programming – Optimal

Binary Search Tree - Warshall‟s Algorithm for Finding Transitive Closure.

UNIT V ADVANCED ALGORITHM DESIGN AND

ANALYSIS

9

Backtracking – N-Queen's Problem - Branch and Bound – Assignment Problem - P & NP

problems – NP-complete problems – Approximation algorithms for NP-hard problems –

Traveling salesman problem-Amortized Analysis.

TOTAL : 45 PERIODS

REFERENCES:

1.

Anany Levitin “Introduction to the Design and Analysis of Algorithms” Pearson Education,

2015

2.

E. Horowitz, S.Sahni and Dinesh Mehta, “Fundamentals of Data structures in C++”,

University Press, 2007

3.

E. Horowitz, S. Sahni and S. Rajasekaran, “Computer Algorithms/C++”, Second Edition,

University Press, 2007

4. Gilles Brassard, “Fundamentals of Algorithms”, Pearson Education 2015

5. Harsh Bhasin, “Algorithms Design and Analysis”, Oxford University Press 2015

6. John R.Hubbard, “Data Structures with Java”, Pearson Education, 2015

7. M. A. Weiss, “Data Structures and Algorithm Analysis in Java”, Pearson Education Asia,

2013

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 2

8. Peter Drake, “Data Structures and Algorithms in Java”, Pearson Education 2014

9. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, "Introduction to algorithms",

Thrid Edition, PHI Learning Private Ltd, 2012

10. Tanaenbaum A.S.,Langram Y. Augestein M.J, “Data Structures using C” Pearson

Education , 2004.

11. V. Aho, J. E. Hopcroft, and J. D. Ullman, “Data Structures and Algorithms”, Pearson

Education, 1983

COURSE OUTCOMES (COs)

C201.1: Describe, explain and use abstract data types including stacks, queues and lists

C201.2: Design and Implement Tree data structures and Sets

C201.3: Able to understand and implement non linear data structures - graphs

C201.4: Able to understand various algorithm design and implementation

MAPPING BETWEEN COs, POs AND PSOs

COs
PROGRAMME OUTCOMES (POs) PSOs

PO1 P02 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2

C201.1 1 2 1 2 1 - - - 1 1 1 1 2 2

C201.2 2 2 1 1 1 - - - 1 1 1 1 2 1

C201.3 2 2 1 2 1 - - - 1 1 1 1 2 1

C201.4 2 2 2 2 1 - 1 - 1 2 1 1 2 2

RELATION BETWEEN COURSE CONTENTS WITH CO’s

S.No
Knowledge

level
COURSE CONTENT

Course

Outcomes

UNIT I LINEAR DATA STRUCTURES - 9 hrs

1 U,R Introduction - Abstract Data Types (ADT)

C201.1

2 U, An,AP,C Stack – Queue – Circular Queue - Ended Queue

3 U, An, Ap Applications of stack

4 U, An, Ap Evaluating Arithmetic Expressions

5 An, Ap, E Applications of Queue - Linked Lists - Singly

Linked List - Circularly Linked List - Doubly

Linked lists

6 U, Ap, E, C Applications of linked list

7 U, An,AP,C Polynomial Manipulation

UNIT II NON-LINEAR TREE STRUCTURES - 9hrs

1 U, An,AP,C Binary Tree – expression trees – Binary tree

traversals

C201.2

2 U, An, Ap Applications of trees

3 U, R, C Huffman Algorithm

4 U, Ap, C Binary search tree - Balanced Trees

5 U, Ap, An AVL Tree - B-Tree - Splay Trees

6 U, Ap, C, E Heap- Heap operations- -Binomial Heaps -

Fibonacci Heaps

7 U,R Hash set

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 3

UNIT III GRAPHS - 9 hrs

1 U, C Representation of graph

C201.3

2 U, Ap Graph Traversals - Depth-first and breadth-first

traversal

3 U, Ap, E, C Applications of graphs

4 U, Ap, C Topological sort

 5 U, Ap, E, C shortest-path algorithms - Dijkstra‟s algorithm –

Bellman-Ford algorithm – Floyd's Algorithm

6 U, Ap, E, C Minimum Spanning Tree

7 U, Ap, E, C Prim's and Kruskal's Algorithms.

UNIT IV ALGORITHM DESIGN AND ANALYSIS - 9 hrs

1 U,Ap, An, E Algorithm Analysis – Asymptotic Notations

C201.4

2 U, Ap, R Divide and Conquer – Merge Sort – Quick Sort

3 U, Ap, C, E Binary Search

4 U,Ap, An, E Greedy Algorithms – Knapsack Problem

5 U,Ap, An, E Dynamic Programming

6 U,Ap, An, E Optimal Binary Search Tree

7 U,Ap, An, E Warshall‟s Algorithm for Finding Transitive

Closure

UNIT V ADVANCED ALGORITHM DESIGN AND ANALYSIS - 9 hrs

1 U,Ap, An, E Backtracking

C201.4

2 U,Ap, An, E N-Queen's Problem

3 U,Ap, An, E Branch and Bound

4 U,Ap, An, E Assignment Problem

5 U,Ap, An, E P & NP problems – NP-complete problems -

Approximation algorithms for NP-hard problems

6 U,Ap, An, E Traveling salesman problem

6 U,Ap, An, E Amortized Analysis

ADDITIONAL TOPICS

The Knight Problem using backtracking C201.4

Finding a Hamiltonian circuit or disprove its existence in the graph C201.3

R – Remember; Ap – Apply; An – Analyze; U – Understand, E- Evaluate ,C-Create

PART - A

UNIT – I

1. Define data structure. What is the main advantage of data structure?

A data structure is a logical or mathematical way of organizing data. It is the way of

organizing, storing and retrieving data and the set of operations that can be performed on

that data.

 Eg.: Arrays, structures, stack, queue, linked list, trees, graphs.

2. What are the different types of data structures.

Primitive Data Structure- It is basic data structure which is defined by the language and

can be accessed directly by the computer.

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 4

Non Primitive Data Structure- Data structure emphasize on structuring of a group of

homogenous or heterogeneous data item.

Linear Data Structure- A data structure which contains a linear arrangement of

elements in the memory.

Non-Linear Data Structure- A data structure which represents a hierarchical

arrangement of elements.

 3. Define Abstract Data Type.

 An Abstract data type is a data type that is organized in such a way that the

specification of the objects and the specification of operations on the objects is

separated from the representation of the objects and the implementation of the

operations. In other words, ADT is a collection of values and a set of operations on those

values. ADT is a mathematical tool

 for specifying the logical properties of a datatype.

4. Define an array. Mention the different kinds of arrays with which you can

manipulate and represent data.

An array is a group of related data items that shares a common name. In other words, we

can say it is a collection of data items which are of same data type. The data items are

stored in contiguous memory locations. There are three kinds of arrays present for the

manipulation and representation of data.They are

 1. One dimensional array.

 2. Two dimentional array.

 3. Multi dimentional array.

5. A two dimensional array consisting of 8 rows and 3 columns is stored in a row

major order. Compute the address of element A(4, 2). Base address is 1000 and

word length is 2. Find the address of the same element in the column major

representation.

In Row major representation

Address(a[i, j]) = base address + [(i-l1) * (u2-l2+1) + (j-l2)] * element size

Here we can represent the array as a[0..7, 0..2]

Base address = 1000

l1=0, u1=7, l2=0, u2=2

I= 4, j=2

Element size = 2

Address(a[4,2]) = 1000 + [(4-0)*(2-0+1)+(2-0)] * 2

 = 1000 + [4*3 + 2] *2

 = 1028

In Column major representation

Address(a[i, j]) = base address + [(j-l2) * (u1-l1+1) + (i-l1)] * element size

Here we can represent the array as a[0..7, 0..2]

Base address = 1000

L1=0, u1=7, l2=0, u2=2

I= 4, j=2

Element size = 2

Address(a[4,2]) = 1000 + [(2-0) * (7-0+1) + (4-0)] * 2

 = 1000 + [2 * 8 + 4] *2

 = 1040

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 5

6. How much memory is required for storing two matrices A(10,15,20) and B(11,16,21)

where each element requires 16 bit for storage.

 Number of elements in array A = 10*15*20 =3000

 Element Size = 16 bits.

 Memory required for storing A = 3000*16=48,000

 Number of elements in array A = 11*16*21=3696

 Element Size = 16 bits

 Memory Required for storing A = 3696 *16 = 59,136

 Total = 107136 bits = 107136/8 = 13,392 bytes.

7. What are the differences between arrays and structures? (JAN 2012)

 ARRAYS STRUCTURES

1.Array size should be mentioned during

the declaration.

Declared using the keyword “struct”.

2. Array uses static memory location. Each member has its own memory

location.

3. Each array element has only one part. Only one member can be handled at a

time.

8. Define stack. Give some applications of stack.

A stack is an ordered list in which insertions and deletions are made at one end called the

top. Stack is called as a Last In First Out(LIFO) data structure. Stack is used in Function

call, Recursion and evaluation of expression.

9. How do you check the stack full and stack empty condition?

Void StackFull()

{

 If (top == maxsize-1)

 Printf(“Stack is Full”);

}

Void StackEmpty()

{

 If (top == -1)

 Printf(“Stack is Empty”);

}

10. Define the terms: Infix, postfx and prefix.

 INFIX: It is a conventional way of writing an expression.The notation is

 <Operand><Operator><Operand>

 This is called infix because the operators are in between the operands.

EXAMPLE: A+B

 POSTFIX: In this notation the operator is suffixed by operands.

 <Operand><Operand><Operator>

EXAMPLE: AB+

 PREFIX: In this notation the operator preceeds the two operands.

 <Operator><Operands><Operand>

EXAMPLE: +AB

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 6

11. What are the advantages in reverse polish (prefix and postfix notation) over polish

(infix) notation?

The advantages in prefix & postfix notation over infix notation is:

 The scanning of the expression is required in only one direction viz. from left to

right and only once; where as for the infix expression the scanning has to be done in both

directions.

 For example, to evaluate the postfix expression abc*+, we scan from left to right

until we encounter *. The two operands which appear immediately to the left of this

operator are its operands and the expression bc* is replaced by its value.

12. Define queue and give its applications

A Queue is an ordered list in which all insertions take place at one end called the rear and

all deletions take place at the opposite end called the front. The Queue is called as the

FIFO data structure.

Applications of Queue:

1. It is used in batch processing of O.S

2. It is used in simulation

3. It is used in queuing theory

4. It is used in computer networks where the server takes the jobs of the clients

using queuing strategy.

13. What is a circular queue? How do you check the queue full condition?

In circular queue, the elements are arranged in a circular fashion. Circular queue is a data

structure which efficiently utilizes the memory space & the elements Q[0], Q[1], …, Q[n-

1] are arranged in circular fashion such that Q[n-1] is followed by Q[0].

It returns queue full condition only when the queue does not have any space to insert new

values. But ordinary queue returns queue full condition when the rear reaches the last

position.

Void CircularQFull()

{

 if (front == (rear+1)%maxsize)

 printf(“Circular Queue is Full”);

}

14. Write an algorithm to count the nodes in a circular queue

 int countcq()

 {

Count = 0;

If (front = -1)

 Printf (“ Queue is empty”);

Else

{ i = front

while (i !=rear)

 {

 Count++;

 i = (i+1)%maxsize;

 }

 Count++;

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 7

}

Return(count);

 }

15. Define Dequeue.

Dequeue is a queue in which insertion and deletion can happen in both the ends

(front & rear) of the queue.

10 20 30

16. What are the two kinds of dequeue?

Input restricted dequeue -- restricts the insertion of elements at one end (rear) only, but

the deletion of elements can be done at both the ends of a queue.

Output restricted dequeue --Restricts the deletion of elements at one end (front) only,

and allows insertion to be done at both the ends of a deque.

17. What is a priority queue?

A queue in which we are able to insert or remove items from any position based on some

priority is referred to as priority queue.

18. Define Linked list and give its applications.

It is an ordered collection of homogeneous data elements. The elements of the linked list

are stored in non contiguous memory locations. So each element contains the address of

the next element in the list. The last node contains the NULL pointer which represents the

end of the list.

Example:

 Applications of Linked List:

 It is used in polynomial manipulation.

 It is used for sparse matrix representation.

19. Compare array and linked list.

Array Linked List

1. In an array, the successive elements are

in contiguous memory locations

1. Successive elements in the list can be

stored any where in the memory

2. Insertion & deletion operation requires

lot of data movement.

2. No data movement during insertion &

deletion.

3. The amount of memory needed to store

the list is less.

3. More storage is needed because with

each data item the link is also stored.

4. Follows static memory allocation 4. Follows dynamic memory allocation.

20. Define Doubly Linked List.

The Doubly linked list is a collection of nodes each of which consists of three parts

namely the data part, prev pointer and the next pointer. The data part stores the value of

the element, the prev pointer has the address of the previous node and the next pointer

has the value of the next node.

First

Insertion

Deletion

Insertion

Deletion

1 6 4 10 NULL

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 8

In a doubly linked list, the head always points to the first node. The prev pointer of the

first node points to NULL and the next pointer of the last node points to NULL.

21. What are the advantages of using doubly linked list over singly linked list?

The advantage of using doubly linked list is,it uses the double set of pointers.One

pointing to the next item and other pointing to the preceeding item.This allows us to

traverse the list in either direction.

22. List the advantages of linked list

Since linked list follows dynamic memory allocation, the list can grow

dynamically, the insertion and deletion of elements into the list requires no data

movement

UNIT-II

1. Define tree.
A tree is a finite set of one or more nodes such that there is a specially designated node

called the root. The remaining nodes are partitioned into n>=0 disjoint sets T1, T2, …,

Tn, where each of these sets is a tree. T1, …,Tn are called the subtrees of the root.

2. Define the following terms: node, leaf node, ancestors, siblings of a node

Node: Each element of a binary tree is called node of a tree. Each node may be a root of a

tree with zero or more sub trees.

 Leaf node: A node with no children (successor) is called leaf node or terminal node.

Ancestor: Node n1 is an ancestor of node n2 if n1 is either a father of n2 or father of

some ancestor of n2.

 Siblings: Two nodes are siblings if they are the children of the same parent.

3. Define level of a node, degree of a node, degree of a tree, height and depth of a tree.

Level of a node: The root node is at level 1. If a node is at level l, then its children are at

level i+1.

 Degree of a node: The number of sub trees of a node is called as degree of a node.

 The degree of a tree is the maximum of the degree of the nodes in the tree.

 The height or depth of a tree is defined to be the maximum level of any node in the tree.

 4. What are the ways to represent Binary trees in memory?
1. Array representation (or) Sequential Representation.

2. Linked List representation (or) Node representation.

 5. Define binary tree.

Binary tree is a finite set of elements that is either empty or is partitioned into three

disjoint subsets. The first subset contains the single element called the root of tree. The

other two subsets are themselves binary tree called the left and right sub tree of original

tree. In other words, a binary tree is a tree in which each node can have a maximum of

two children.

 6. Define Full binary tree (or) Complete binary tree

A full binary tree of depth k is a binary tree of depth k having 2k – 1 nodes. In other words,

all the levels in the binary tree should contain the maximum number of nodes.

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 9

 7. Define strictly binary tree
 If every non leaf node in a binary tree has non empty left and right sub trees then the tree is

 termed as strictly binary tree. In other words, a strictly binary tree contains leaf nodes and non

 leaf nodes of degree

8. List out few of the Application of tree data-structure?
The applications of tree data-structure are the manipulation of Arithmetic expression, Symbol

Table construction, Syntax analysis.

9. Define expression tree
 An expression tree is built up from the simple operands and operators of an(arithmetic or

logical) expression by placing the simple operands as the leaves of a binary tree and the

operators as the interior nodes.

10. Traverse the given tree using Inorder, Preorder and Postorder traversals.

 Inorder : D H B E A F C I G J

 Preorder: A B D H E C F G I J

 Postorder: H D E B F I J G C A

11. How many null branches can a binary tree have with 20 node?
 21 null branches

 Let us take a tree with 5 nodes (n=5)

It will have only 6 (ie,5+1) null branches. In general, a binary tree with n nodes has

exactly n+ 1 null node. Thus a binary tree with 20 nodes will have 21 null branches.

 12. What is a binary search tree?

 A binary search tree is a binary tree. It may be empty. If it is not empty then, it satisfies the

 following properties.

Null Branches

A

B C

D E F G

H I J

Given tree:

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 10

 1. Every element has a key & the keys are distinct.

 2. The keys in the left sub tree is smaller than the key in the root.

 3. Keys in the right sub tree is larger than the key in the root.

 4. The left & right sub trees are also BST.

13. How will you construct binary search tree?
a. Make the first node as the root node.

b. To insert the next node into the BST, search for the value in the BST. If the value is

found in the BST, then a duplicate value cannot be inserted into the BST.

c. If the element is not found, add the element at the point where the search becomes

unsuccessful.

14. Define the term skewed tree?
 In skewed tree all the nodes are skewed in one direction either left or right.

 Left Skewed Tree: A tree in which all nodes are skewed in left direction.

 Right Skewed Tree: A tree in which all nodes are skewed in right direction.

15. What is the maximum number of nodes in level i of a binary tree and what is the

 maximum number of nodes in a binary tree of depth k?

 The maximum number of nodes in level i of a binary tree = 2i-1

 The maximum number of nodes in a binary tree of depth k = 2k-1, where k>0

16.What are the non-linear data structures? (JAN 2014)
 Non-Linear Data Structure- A data structure which represents a hierarchical arrangement of

 elements. Examples: Graphs and trees.

 17. Define balanced search tree.
 Balanced search tree have the structure of binary tree and obey binary search tree properties

with that it always maintains the height as O(log n) by means of a special kind of rotations.

Eg. AVL, Splay, B-tree.

18.What are the drawbacks of AVL trees?
 The drawbacks of AVL trees are

 Frequent rotations

 The need to maintain balances for the tree’s nodes

 Overall complexity, especially of the deletion operation.

19. Define B-tree?
 A B-tree of order m in an m-way search tree that is either empty or is of height ≥1 and

1. The root node has at least 2 children

2. All nodes other than the root node and failure nodes have at least m/2 children.

3. All failure nodes are at same level.

20. Explain AVL rotation.
Manipulation of tree pointers is centered at the pivot node to bring the tree back into height

 balance. The visual effect of this pointer manipulation so to rotate the sub tree whose root is

the pivot node. This operation is referred as AVL rotation.

21. What are the different types of Rotation in AVL Tree?
 Two types of rotation are

1. single rotation

2. double rotation.

22. Explain Hashing.
 Hashing is a technique used to identify the location of an identifier ‘x’ in the memory by

some arithmetic functions like f(x), which gives address of ‘x’ in the table.

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 11

23. Explain Hash Function. Mention Different types of popular hash function.
 Hash Function takes an identifier and computes the address of that identifier in the hash table.

 1.Division method

2.Square method

3.Folding method

24..Define Splay Tree.

A splay tree is a self-adjusting binary search treewith the additional property that recently

accessed elements are quick to access again. It performs basic operations such as insertion,

look-up and removal in O(log n) amortized time.

25. What are the different rotations in splay tree?

 Zig Rotation.

 Zag Rotation

 Zig-Zag Rotation.

 Zag-Zig Rotation

 Zig-Zig Rotation

 Zag-Zag- Rotation

26.Write short notes on Heap.

Heap is a special case of balanced binary tree data structure where the root-node key is compared

with its children and arranged accordingly. If α has child node β then −

key(α) ≥ key(β)

27.Define Binomial Heap.

A Binomial Heap is a collection of Binomial Trees A Binomial Tree of order 0 has 1 node. A

Binomial Tree of order k can be constructed by taking two binomial trees of order k-1, and

making one as leftmost child of other.

A Binomial Tree of order k has following properties.

a) It has exactly 2k nodes.

b) It has depth as k.

c) There are exactly kCi nodes at depth i for i = 0, 1, . . . , k.

d) The root has degree k and children of root are themselves Binomial Trees with order k-1, k-

2,.. 0 from left to right.

28.Define Fibonacci Heaps.

 Fibonacci heap is a data structure for priority queue operations, consisting of a collection

of heap-ordered trees. It has a better amortized running time than many other priority queue data

structures including the binary heap and binomialheap.

29.Write notes on Hash Set.

 Implements Set Interface.

 Underlying data structure for HashSet is hashtable.

 As it implements the Set Interface, duplicate values are not allowed.

 Objects that you insert in HashSet are not guaranteed to be inserted in same order.

 Objects are inserted based on their hash code.

 NULL elements are allowed in HashSet.

 HashSet also implements Searlizable and Cloneable interfaces.

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 12

UNIT-III

1. Write the concept of Prim’s spanning tree.

Prim’s algorithm constructs a minimum spanning tree through a sequence of expanding

sub trees. The initial sub tree in such a sequence consists of a single vertex selected

arbitrarily from the set V of the graph’s vertices.

On each iteration, we expand the current tree in the greedy manner by simply attaching to

it the nearest vertex not in that tree. The algorithm stops after all the graph’s vertices have

been included in the tree being constructed

2. What is the purpose of Dijikstra’s Algorithm?

Dijikstra’s algorithm is used to find the shortest path between sources to every vertex.

This algorithm is applicable to undirected and directed graphs with nonnegative weights

only.

3. How efficient is prim’s algorithm?

It depends on the data structures chosen for the graph itself and for the priority queue of

the set V-VT whose vertex priorities are the distances to the nearest tree vertices.

4. Mention the two classic algorithms for the minimum spanning tree problem.

 Prim’s algorithm

 Kruskal’s algorithm

5. What is the Purpose of the Floyd algorithm?

The Floyd’s algorithm is used to find the shortest distance between every pair of vertices

in a graph.

6. What are the conditions involved in the Floyd’s algorithm?

 Construct the adjacency matrix.

 Set the diagonal elements to zero

 Ak[i,j]= min Ak-1[i,j]

 Ak-1[i,k]and Ak-1[k,j]

7. Write the concept of kruskal’s algorithm.

Kruskal’s algorithm looks at a minimum spanning tree for a weighted connected graph

G=(V,E) as an acyclic sub graph with |V|-1 edges for which the sum of the edge weights

is the smallest. Consequently, the algorithm constructs a minimum spanning tree as an

expanding sequence of sub graphs, which are always acyclic but are not necessarily

connected on the intermediate stages of the algorithm. The algorithm begins by sorting

the graph’s edges in non decreasing order of their weights. Then, starting with the empty

sub graph, it scans this sorted list, adding the next edge on the list to the current sub graph

if such an inclusion does not create a cycle and simply skipping the edge otherwise.

8. What is the difference between dynamic programming with divide and conquer

method?

Divide and conquer divides an instance into smaller instances with no intersections

whereas dynamic programming deals with problems in which smaller instances overlap.

Consequently divide and conquer algorithm do not explicitly store solutions to smaller

instances and dynamic programming algorithms do.

9. State two obstacles for constructing minimum spanning tree using exhaustive-

search approach.

 The number spanning tree grows exponentially with the graph size

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 13

 Generating all spanning trees for a given graph is not easy; in fact, it is

more difficult than finding a minimum spanning tree for a weighted graph by

using one of several efficient algorithms available for this problem

10. Define spanning tree and minimum spanning tree problem.

A spanning tree of a connected graph is its connected acyclic sub graph that contains all

the vertices of the graph. A minimum spanning tree problem is the problem of finding a

minimum spanning tree for a given weighted connected graph.

11. Define the single source shortest paths problem.

Dijkstra’s algorithm solves the single-source shortest-path problem of finding shortest

paths from a given vertex (the source) to all the other vertices of a weighted graph or

digraph. It works as Prim’s algorithm but compares path lengths rather than edge lengths.

Dijkstra’s algorithm always yields a correct solution for a graph with nonnegative

weights

12. Mention the methods for generating transitive closure of digraph.

 Depth First Search (DFS)

 Breadth First Search (BFS)

13. What do you meant by graph traversals?

Graph traversal (also known asgraph search) refers to the process of visiting (checking

and/or updating) each vertex in a graph. Such traversalsare classified by the order in

which the vertices are visited. Tree traversal is a special case of graph traversal

14. Define Depth First Search DFS

Depth First Search (DFS) algorithm traverses a graph in a depthward motion and uses a stack

to remember to get the next vertex to start a search, when a dead end occurs in any iteration.

15. Write down the steps involved in DFS

Rule 1 − Visit the adjacent unvisited vertex. Mark it as visited. Display it. Push it in a

stack.

Rule 2 − If no adjacent vertex is found, pop up a vertex from the stack. (It will pop up all

the vertices from the stack, which do not have adjacent vertices.)

Rule 3 − Repeat Rule 1 and Rule 2 until the stack is empty

16. Define Breadth First Search (BFS)

Breadth First Search (BFS) algorithm traverses a graph in a breadthward motion and uses

a queue to remember to get the next vertex to start a search, when a dead end occurs in

any iteration.

17. Write down the steps involved in Breadth First Search (BFS)

Rule 1 − Visit the adjacent unvisited vertex. Mark it as visited. Display it. Insert

it in a queue.

Rule 2 − If no adjacent vertex is found, remove the first vertex from the queue.

Rule 3 − Repeat Rule 1 and Rule 2 until the queue is empty

18. Define graph data structure

A graph is a pictorial representation of a set of objects where some pairs of objects are

connected by links. The interconnected objects are represented by points termed

as vertices, and the links that connect the vertices are called edges. Formally, a graph is a

pair of sets (V, E), where V is the set of vertices and Eis the set of edges, connecting the

pairs of vertices.

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 14

19. Define topological sorting

Topological sorting of vertices of a Directed Acyclic Graph is an ordering of the

vertices v1,v2,...vn in such a way, that if there is an edge directed towards vertex vj from

vertex vi, then vi comes before vj.

20. Define Memory function techniques

The memory function technique seeks to combine strengths of the top-down and

bottom-up approaches to solving problems with overlapping sub problems. It does this

by solving, in the top-down fashion but only once, just necessary sub problems of a

given problem and recording their solutions in a table.

UNIT-IV

1. Define Algorithm.

An algorithm is a sequence of unambiguous instructions for solving a problem, i.e., for

obtaining a required output for any legitimate input in a finite amount of time.

2. Define order of an algorithm.

The order of an algorithm is a standard notation of an algorithm that has been developed

to represent function that bound the computing time for algorithms. The order of an

algorithm is a way of defining its efficiency. It is usually referred as Big O notation.

3. What are the features of efficient algorithm?

 Free of ambiguity

 Efficient in execution time

 Concise and compact

 Completeness

 Definiteness

 Finiteness

4. Define Asymptotic Notations.

The notation that will enable us to make meaningful statements about the time and space

complexities of a program. This notation is called asymptotic notation. Some of the

asymptotic notation are 1. Big Oh notation, 2. Theta notation, 3. Omega notation, 4. Little

Oh notation.

5. What is best-case efficiency?
The best-case efficiency of an algorithm is its efficiency for the best-case input of size

n, which is an input or inputs for which the algorithm runs the fastest among all

possible inputs of that size.

6. Define divide and conquer design technique
 A problem’s instance is divided into several smaller instances of the same problem,

ideally of about the same size

 The smaller instances are solved

 If necessary, the solutions obtained for the smaller instances are combined to get a

solution to the original instance.

7. List out some of the stable and unstable sorting techniques.

Stable sorting techniques includes Bubble sort, Insertion sort, Selection sort, Merge sort

and Unstable sorting techniques includes Shell sort, Quick sort, Radix sort, Heap sort

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 15

8. Define Knapsack problem

Given n items of known weights w1…wn and values v1…vn and knapsack of capacity

W. The aims is to find the most valuable subset if the items that fit into the knapsack. The

exhaustive search approach to knapsack problem leads to generating all the subsets of the

set of n items given, computing the total weight of each subset to identify feasible subsets

and finding a subset of the largest value among them.

9. Define merge sort.
The merge sort algorithm divides a given array A[0..n-1] by dividing it into two halves

A[0.. n/2-1] and A[n/2-..n-1], sorting each of them recursively, and then merging the two

smaller sorted arrays into a single sorted one.

10. Define quick sort

Quick sort employs a divide-and-conquer strategy. It starts by picking an element from

the list to be the "pivot." It then reorders the list so that all elements with values less than

the pivot come before the pivot, and all elements with values greater than the pivot come

after it (a process often called "partitioning"). It then sorts the sub-lists to the left and the

right of the pivot using the same strategy, continuing this process recursively until the

whole list is sorted

11. What is a pivot element?

The pivot element is the chosen number which is used to divide the unsorted data into

two halves. The lower half contains less than value of the chosen number i.e. pivot

element. The upper half contains greater than value of the chosen number i.e. pivot

element. So the chosen number is now sorted.

12. Define Binary Search

Binary search is a efficient algorithm for searching in a sorted array. It works by

comparing a search key K with the array‟s middle element A[m]. If they match, the

algorithm stops; otherwise, the same operation is repeated recursively for the first half of

the array if K<a[m] and for the second half if K>A[m]

13. Define dynamic programming.

Dynamic programming is a technique for solving problems with overlapping sub

problems. Rather than solving overlapping sub problems again and again, dynamic

programming suggests solving each of the smaller sub problems only once and recording

the results in a table from which a solution to the original problem can then be obtained.

14. Define Optimal Binary Search Tree (OBST). (June 06)

Dynamic programming can be used for constructing an optimal binary search tree for a

given set of keys and known probabilities of searching for them. If probabilities of

searching for an element of a set are known, the average number of comparisons in a

search will have smallest possible value in an OBST.

15. State greedy technique.

The greedy approach suggests constructing a solution through a sequence of steps, each

expanding a partially constructed solution obtained so far, until a complete solution to the

problem is reached.

16. Write down the optimization technique used for Warshall’s algorithm. State the

rules and assumptions which are implied behind that.

Optimization technique used in Warshall’s algorithm is Dynamic programming. Dynamic

programming is a technique for solving problems with overlapping sub problems.

Typically, these sub problems arise from a recurrence relating a solution to a given

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 16

problem with solutions to its smaller sub problems of the same type. Dynamic

programming suggests solving each smaller sub problem once and recording the results

in a table from which a solution to the original problem can be then obtained.

17. Define objective function and optimal solution

To find a feasible solution that either maximizes or minimizes a given objective function.

It has to be the best choice among all feasible solution available on that step.

18. Define knapsack problem using dynamic programming.

Designing a dynamic programming algorithm for the knapsack problem: given n items of

known weights w1. . . wn and values v1, . . . , vn and a knapsack of capacity W, find the

most valuable subset of the items that fit into the knapsack. We assume here that all the

weights and the knapsack capacity are positive integers; the item values do not have to be

integers

19. Mention different algorithm design techniques
 Methods of specifying an algorithm

 Proving an algorithms correctness

 Analyzing an algorithm

 Coding an algorithm

20. Mention the two properties of sorting algorithms

 A sorting algorithm is called stable if it preserves the relative order of any two

equal elements in its input.

 An algorithm is said to be in place if it does not require extra memory

UNIT-V

1. On what basis problems are classified?

Problems are classified into two types based on time complexity. They are

 Polynomial (P) Problem

 Non-Polynomial (NP) Problem

2. Define Polynomial (P) problem

Class P is a class of decision problems that can be solved in polynomial time by

(deterministic) algorithms. This class of problems is called polynomial.

3. Define Non Polynomial (NP) problem

Class NP is the class of decision problems that can be solved by nondeterministic

polynomial algorithms. This class of problems is called nondeterministic polynomial

4. Give some examples of Polynomial problem
 Selection sort

 Bubble Sort

 String Editing

 Factorial

 Graph Coloring

 5. Give some examples of Non-Polynomial problem

 Travelling Salesman Problem
 Knapsack Problem.

 6. Define backtracking

 The principal idea is to construct solutions one component at a time and evaluate such

partially constructed candidates as follows. If a partially constructed solution can be

developed further without violating the problem’s constraints, it is done by taking the

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 17

first remaining legitimate option for the next component. If there is no legitimate option

for the next component, no alternatives for any remaining component need to be

considered. In this case, the algorithm backtracks to replace the last component of the

partially constructed.

7. Define state space tree

 It is convenient to implement this kind of processing by constructing a tree of choices being

made, called the state-space tree. Its root represents an initial state before the search for a

solution begins. The nodes of the first level in the tree represent the choices made for the first

component of a solution; the nodes of the second level represent the choices for the second

component, and so on

8. When a node in a state space tree is said to promising and non promising?

 A node in a state-space tree is said to be promising if it corresponds to a partially

constructed solution that may still lead to a complete solution; otherwise, it is called non

promising. Leaves represent either non promising dead ends or complete solutions found by the

algorithm

9. Define n-queens problem

The problem is to place n queens on an n × n chessboard so that no two queens attack

each other by being in the same row or in the same column or on the same diagonal

10. Define branch and bound method
 Branch and bound is an algorithm that enhances the idea of generating a state

space tree with idea of estimating the best value obtainable from a current

node of the decision tree

 If such an estimate is not superior to the best solution seen up to that point in

the processing, the node is eliminated from further consideration

11. How NP-hard problems are different from NP-Complete?

NP-hard : If an NP-hard problem can be solved in polynomial time, then all NP-complete

problems can be solved in polynomial time.

NP-Complete: A problem that is NP-complete has the property that it can be solved in

polynomial time if all other NP-complete problems can also be solved in polynomial time

12. Define decision problem

Any problem for which the answer is either zero or one is called a decision problem. An

algorithm for a decision problem is termed a Decision algorithm

13. Define optimization Problem

Any problem that involves the identification of an optimal (maximum or minimum) value

of a given cost function is known as an optimization problem. An Optimization algorithm

is used to solve an optimization problem

14. Mention the relation between P and NP

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 18

15. Mention the relation between P, NP, NP-Hard and NP Complete Problem

16. Define NP hard problems

If an NP-hard problem can be solved in polynomial time, then all NP-complete
problems can be solved in polynomial time.
17. Define NP complete problems

A problem that is NP-complete has the property that it can be solved in polynomial time
if all other NP-complete problems can also be solved in polynomial time

18. Define assignment problem
Assignment problem is the problem of assigning n people to n jobs so that the

total cost of the assignment is as small as possible
19. What do you meant by amortized analysis ?

Amortized analysis is used for algorithms where an occasional operation is very
slow, but most of the other operations are faster. In Amortized Analysis, we analyze a
sequence of operations and guarantee a worst case average time which is lower than the
worst case time of a particular expensive operation

20. What are the examples for amortized analysis?
The example data structures whose operations are analyzed using Amortized Analysis
are Hash Tables, Disjoint Sets and Splay Trees.

http://en.wikipedia.org/wiki/Amortized_analysis
http://en.wikipedia.org/wiki/Amortized_analysis

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 19

PART-B

UNIT-I

1. Write the algorithm for performing operations in a stack. Trace your algorithm

with suitable example

Stack

 A stack is an ordered collection of items into which new items may be inserted and from

which items may be deleted at one end called the top of the stack

 Stack is a linear data structure which follows Last-in First-out principle, in which both

insertion and deletion occur at only one end of the list called the top.

 The insertions operations is called push and deletion operations is called pop operation.

Every insertion stack pointer is incremented by one, every deletion stack pointer will be

decremented by one

Operations on stack

Push:- the process of inserting a new element to the top of the stack. For every push

operations the top is incremented by one.

Pop:- Pop removes the item in the top of the stack

Exceptional conditions

Overflow:- Attempt to insert an element when the stack is full is said to be overflow.

Underflow:- Attempt to delete an element ,when the stack is said to be underflow.

Algorithm for insertion(Push):

Void push(int s[10], int top, int x)

{

// s-> stack, // top -> points the top

//x-> element to be inserted into the stack

If (top == MAXSIZE -1)

 Printf(“Stack Full”);

Else

 {top = top +1;s[top] = x; }}

Algorithm for deletion(pop):

int pop(int s[10], int top, int x)

 { // s-> stack

 //top-> points the top of the stack

 // x->int x;

 If (top== -1)

 { printf(“ Stack Empty”);

 return (-1);

A

Push
A

A

D

Push
D

A

B

C

Push
C

A

B

Push
B

A

Pop
B

A

Pop

B

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 20

 }Else

 {x = s[top];

 top = top-1; }

Algorithm for display:

void display(int s[10], int top)

{

 Int i;

 If (top ==-1)

 Printf(“Stack Empty”);

else

 {

 For(i = 0; i<=top; i++)

 Printf(“%d”, s[i]);

 }

}

2. Evaluate the postfix expression that is obtained in (i) for the values A = 5, B =3, C=

2, D= 2, E = 4, F = 3, G = 8, H=6

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 21

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 22

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 23

3. Write the algorithms for PUSH, POP and change operations on stack. Using these

algorithms, how do you check whether the given string is a palindrome?

Algorithm for insertion(Push):

Void push(int s[10], int top, int x)

{

// s-> stack

// top -> points the top

//x-> element to be inserted into the stack

If (top == MAXSIZE -1)

 Printf(“Stack Full”);

Else

 {

 top = top +1;

 s[top] = x;

 }

}

Algorithm for deletion(pop):

int pop(int s[10], int top, int x)

 {

 // s-> stack

 //top-> points the top of the stack

 // x->int x;

 If (top== -1)

 {

 printf(“ Stack Empty”);

 return (-1);

 }

 Else

 {

 x = s[top];

 top = top-1;

 }

Algorithm for change operation:

void change(int s[10], intpos, intval)

 {

 // s-> stack

 //top-> points the top of the stack

 // x->int x;

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 24

 If (pos>top)

 {

 printf(“ Change operation is not possible”);

 }

 Else

 {

 S[pos] = val;

 }

Algorithm for Checking for Palindrome

Void palindrome(char str[])

{

 charrevstr[20];

i = 0;

While (str[i] != ‘\0’)

{

Push(str[i])

i++;

}

i=0;

While (!stackempty())

{

 revstr[i] = pop()

 i++;

}

if (strcmp(str, revstr) == 0)

printf(“The given string is a palindrome”);

else

printf(“The given string is not a palindrome”)

4. Write the algorithm for converting infix expression to postfix expression with the

suitable example

Infix to postfix Conversion:

1. Fully parenthesise the expression according to the priority.

2. Move all operators so that they replace their corresponding to right paranthesis

3. Delete all the paranthesis

Priority

Operator Priority

Brackets 1

Unary - 2

*,/,% 3

+,- 4

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 25

<,>,<=,>= 5

==, != 6

&& 7

|| 8

Algorithm from infix to postfix:

1. Read the infix expression 1 character at a time and repeat the steps 2 to 5 until it

encounters the delimiter.

2. If the (character is an operand)

Append it to the postfix string

3. else if the (character is ‘(‘)

push it into the stack

4. else if (character is ‘)’)

pop all the elements from the stack and append it to the postfix string till it encounter ‘(‘.

Discard both paranthesis in the output.

5. else if (the character is an operator)

{

 While (stack not empty and priority of(top element in the stack is higher =

priority of the input character))

 Pop the operator from the stack and append it to the postfix string

}

Push the operator into the stack

}

6. While(Stack is not empty)

Pop the symbols from the stack and append it to the postfix expression

5. Write the algorithm for evaluating the postfix expression with the suitable example.

 Evaluation of expression

Algorithm

Step 1: Read the input postfix string one character at a time till the end of input

 While(not end of input)

 {

 Symbol = next input character

 If(symbol is an operand)

 Push symbol into the stack

 Else /* symbol is an operator */

 {

 Operand 2 = pop element from the stack;

 Operand 1 = pop element from the stack;

 Value = result of applying symbol to operand1 and operand2

 Push the value into the stack

 }

}

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 26

 Step 2: Pop the result from the stack.

6. Explain the algorithm for implementing Singly Linked list

A singly linked list is a linked list in which each node contains only one link pointing to

the next node in the list.

In a singly linked list, the first node always pointed by a pointer called HEAD. If the link of the

node points to NULL, then that indicates the end of the list.

Algorithm for Creation:

void create()

{

node *t;

inti,n;

printf("\nenter the no. of elements in the list");

scanf("%d",&n);

first=NULL;

for(i=1;i<=n;i++)

{

t=(node*)malloc(sizeof(node));

scanf("%d",&t->data);

t->link=NULL;

if(first==NULL)

first=last=t;

else

{

last->link=t;

last=t;

}

}

}

Algorithm for insert operation:

void insert(intpos,intval)

{

int i;

node *curr,*prev,*t;

t=(node*)malloc(sizeof(node));

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 27

t->data=val;

t->link=NULL;

curr=first;

i=1;

while(curr!=NULL&&i<pos)

{

prev=curr;

curr=curr->link;

i++;

}

if(i==1)

{

t->link=first;

first=t;

}

else

{

prev->link=t;

t->link=curr;

}

}

Example:

Algorithm for delete operation:

voiddelet(int x)

{

node *curr,*prev,*t;

curr=first; prev=NULL;

while(curr!=NULL&&curr->data!=x)

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 28

{

prev=curr;

curr=curr->link;

}

if(curr==NULL)

printf("\n elememt not found");

else

if(curr==first)

{

t=first;

first=first->link;

}

else

{

t=curr;

prev->link=curr->link;

}

free(t);}

Example:

Algorithm for Traversing a Singly Linked List:

void traverse()

{

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 29

node *curr;

curr=first;

if(curr==NULL)

{

printf("\nlist is empty");

}

else

{

while(curr->link!=NULL)

{

printf("%d->",curr->data);

curr=curr->link;

}

}

printf("%d\n",curr->data);

}

7. Explain creation, insertion and deletion of doubly linked list with example

The Doubly linked list is a collection of nodes each of which consists of three parts namely the

data part, prev pointer and the next pointer. The data part stores the value of the element, the

prev pointer has the address of the previous node and the next pointer has the value of the next

node.

In a doubly linked list, the head always points to the first node. The prev pointer of the

first node points to NULL and the next pointer of the last node points to NULL.

Algorithm for Creation:

void create()

{

node *t;

inti,n;

printf("\nenter the no. of elements in the list");

scanf("%d",&n);

first=NULL;

for(i=1;i<=n;i++)

{

t=(node*)malloc(sizeof(node));

scanf("%d",&t->data);

t->llink=NULL;

t->rlink=NULL;

if(first==NULL)

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 30

first=last=t;

else

{

last->rlink=t;

t->llink=last;

last=t;

}

}

}

Algorithm for insertion:

void insert(intpos,intval)

{

int i;

node *t,*curr,*prev;

t=(node*)malloc(sizeof(node));

t->data=val;

t->llink=NULL;

t->rlink=NULL;

curr=first;

i=1;

while(curr!=NULL&&i<pos)

{

curr=curr->rlink;

i++;

}

if(curr==first)

{

t->rlink=first;

first->llink=t;

first=t;

}

else if(curr==NULL)

{

last->rlink=t;

t->llink=last;

last=t;

}

else

{

curr->llink->rlink=t;

t->llink=curr->rlink;

t->rlink=curr;

curr->llink=t;

}

}

Example:

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 31

Algorithm for Deletion:

voiddelet(int x)

{

node *curr,*t;

curr=first;

while(curr!=NULL&&curr->data!=x)

curr=curr->rlink;

if(curr==NULL)

printf("\n element not found");

else if(curr==first)

{

t=first;

first=first->rlink;

first->llink=NULL;

}

else if(curr==last)

{

t=last;

last=last->llink;

last->rlink=NULL;

}

else

{

t=curr;

curr->llink->rlink=curr->rlink;

curr->rlink->llink=curr->llink;

}

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 32

free(t);

}

Example:

8. Implement a stack using doubly linked lists

Implementing Stack using Doubly Linked List:

Algorithm for Push:

void push(int x)

{

node*t;

t=(node*)malloc(sizeof(node));

t->data=x;

t->llink=NULL;

t->rlink=NULL;

if(top==NULL)

top=t;

else

{

t->rlink=top;

top->llink = t

top=t;

}

printf("\n");

printf("\n the element is pushed \n");

}

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 33

Algorithm for pop operation:

int pop()

{

node*t;

int x;

if (top==NULL)

{

printf("\n");

printf("stack empty \n");

return(-1);

}

else

{

x=top->data;

t=top;

top=top->rlink;

top->llink = NULL;

free(t);

return(x);

}}

Algorithm for Display

void display()

{

node*curr;

curr=top;

while(curr !=NULL)

{

printf("\n%d",curr->data);

curr=curr->rlink;

}

}

9. Construct a dequeue data structure in which the following operations to be

implemented

Push(X,D) : Insert X on the front end of deque D

Pop(D) : Remove the front item from deque D and return it

Inject(X,D) : Insert item X on the rear end of deque D

Eject(D) : Remove the rear item from deque D and return it (JAN 2012)

Struct node

{

Int data;

 Struct node *link;

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 34

};

Structdequeue

{

Struct node *front;

Struct node *rear;

};

Push(X, D)

/* Insert X on the front end of deque D */

void push(int X, structdequeue *D)

{

 struct node *temp;

int *q;

temp = (struct node *) malloc(sizeof(struct node));

 temp->data = X;

temp->link = NULL;

if (D->front == NULL)

 D->front=D->rear = temp;

Else

{

 Temp->link= D->front;

 D->front = temp;

}

}

Pop(D) :

/* Remove the front item from deque D and return it */

int Pop(structdequeue *D)

{

 Struct node *temp = D->front;

Int item;

If (temp==NULL)

{

 Printf(“Queue is empty”);

 Return 0

}

Else

{

 Temp = D->front;

 Item = temp->data;

 p->front = temp->link;

 free(temp);

 if (temp == NULL)

 D->rear = NULL;

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 35

 Return(item)

}

}

Inject(X,D) :

/* Insert item X on the rear end of deque D */

Void insert(int X, struct node *D)

{

 Struct node *temp;

 Temp = (struct node *) malloc(sizeof(struct node));

 Temp->data = item;

 Temp->link = NULL;

 If (D->front == NULL)

 D->front = temp;

 Else

 D->rear->link = temp;

 D->rear = temp;

}

Eject(D) :

/*Remove the rear item from deque D and return it*/

IntEject(struct node *D)

{

 Struct node *temp, *rleft, *q;

 Int item;

 Temp = D->front;

If (D->rear == NULL)

{

 Printf(“Queue is empty”);

 Return 0;

}

Else

{

 While (temp != D->rear)

 {

 Rleft = temp;

 Temp = temp->link;

 }

 q = D->rear;

 Item= q->data;

 Free(q);

 D->rear = rleft;

 D->rear->link = NULL;

 if (D->rear ==NULL)

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 36

 D->front = NULL;

 Return(item);

}

}

10. Explain Circular queue operations with algorithm.

Algorithm for Insertion:

void insert(int x)

{

if (front == (rear+1)%MAZSIZE)

printf("\n Circular queue is full");

else

{

rear = (rear+1)%MAXSIZE;

q[rear]=x;

if(front==-1)

front=0;

}

}

Algorithm for Deletion:

intdelet()

{

if (front == -1)

{

printf(“Circular Q is empty”);

return(-1);

}

else

{

x=q[front];

if(front==rear)

front=rear=-1;

else

front=(front+1)%MAXSIZE;

return(x);

}

Algorithm for displaying the elements:

void display()

{

int i;

if(front==-1)

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 37

printf("\n Circular queue is empty");

else

{

if (front<=rear)

{

for(i=front;i<=rear;i++)

{

 printf("%d\n",q[i]);

}

}

else

{

for(i=front;i<=MAXSIZE-1;i++)

{

 printf("%d\n",q[i]);

}

for(i=0;i<=rear;i++)

{

 printf("%d\n",q[i]);

}

}

}

}

11. Give the algorithm for performing polynomial addition using linked list.

The structure of a node representing the polynomial term is:

structpolynode

{

intcoefft;

intexp;

structpolynode *link

};

Algorithm for polynomial addition

Void PolynomialAddition(polynode *p1, polynode *p2)

{

Polynode *temp1, *temp2, *p3=NULL;

 temp1 = p1;

 temp2 = p2;

while (temp1 != NULL && temp2 != NULL)

{

 temp3 = (polynode *)malloc(sizeof(polynode));

 temp3->link = NULL;

 if (temp1->exp == temp2->exp)

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 38

 {

 temp3->coefft = temp1->coefft + temp2->coefft;

 temp3->exp = temp1->exp;

 }

 else if (temp1->exp> temp2->exp)

 {

 temp3->coefft = temp1->coefft;

 temp3->exp=temp1->exp;

 }

 else

 {

 temp3->coefft = temp2->coefft;

 temp3->exp=temp2->exp;

 }

 if (p3==NULL)

 p3=temp3;

 else

{

 p3->link = temp3;

 p3 = p3->link;

 }

}

while (temp1 != NULL)

{

 temp3 = (polynode *)malloc(sizeof(polynode));

 temp3->link = NULL;

 temp3->coefft = temp1->coefft;

 temp3->exp=temp1->exp;

 if (p3==NULL)

 p3=temp3;

 else

{

 p3->link = temp3;

 p3 = p3->link;

 }

}

while (temp2 != NULL)

{

 temp3 = (polynode *)malloc(sizeof(polynode));

 temp3->link = NULL;

 temp3->coefft = temp2->coefft;

 temp3->exp=temp2->exp;

 if (p3==NULL)

 p3=temp3;

 else

{

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 39

 p3->link = temp3;

 p3 = p3->link;

 }

}

}

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 40

UNIT-II

1. Find out the inorder, preorder, postorder traversal for the binary tree representing the

expression (a+b*c)/(d-e) with the help of procedures

Expression Tree:

Inorder traversal

The inorder traversal of a binary tree is performed as

 traverse the left subtree in inorder.

 Visit the root.

 Traverse the right subtree in inorder.

Recursive Routine for Inorder traversal

Void inorder(Tree T)

{

If(T!=NULL)

{

Inorder(T->left);

Printelement(t->element);

Inorder(t->right);

}

}

In order traversal for the given expression tree: a + b * c / d - e

Preorder traversal

The preorder traversal of a binary tree is performed as

 Visit the root.

 traverse the left subtree in inorder.

 Traverse the right subtree in inorder.

Recursive Routine for preorder traversal

b c

* a

+

d e

-

/

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 41

Void preorder(Tree T)

{

If(T!=NULL)

{

Printelement(t->element);

preorder(T->left);

preorder(t->right);

}

}

Pre order traversal for the given expression tree:/ + a * b c - d e

Postorder traversal

The postorder traversal of a binary tree is performed as

 traverse the left subtree in inorder.

 Traverse the right subtree in inorder.

 Visit the root.

Recursive Routine for postorder traversal

Void postorder(Tree T)

{

If(T!=NULL)

{

postorder(T->left);

postorder(t->right);

Printelement(t->element);

}

}

Post order traversal for the given expression tree: a b c * + d e - /

2. A file contains only colons, spaces, newlines, commas and digits in the following

frequency. colon-100, space – 605 newline – 100, comma – 705, 0-431, 1-242, 2-176, 2-59, 4-

185, 5-250, 6-174,7-199, 8-205, 9-217. Construct the Huffman code. Explain Huffman

algorithm

Symbol Code

Colon 01011

Space 00

New line 0100

, 110

0 100

1 1010

2 0111

3 01010

4 11100

5 1011

6 0110

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 42

7 11101

8 11110

9 11111

4. What is Binary search tree? Write an algorithm to add a node into a binary search

tree.

Algorithm for inserting an element into a BST:

 Void insert(int x)

 {

 node * prev,*curr; /*prev is the parent of curr*/

 curr=root;

 prev=NULL;

 /* search for x */

while(curr!=NULL)

 {

prev=curr;

 if(x==curr->data)

 {

 printf(“duplicate value”);

 return;

 }

 elseif(x<curr->data)

 curr=curr->lchild;

else

curr=curr->rchild;

}

/*perform insertion*/

curr=(node*)malloc(sizeof(node));

curr->data=x;

curr->lchilde=curr->rchild=NULL;

if(root==NULL)

root=curr;

else if(x<prev->data)

prev->lchild=curr;

else

prev->rchild=curr;

 }

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 43

X =25 is inserted into the binary tree

25<40

25>10

25<30

25>20

Search is finished and the element is not found. Hence, attach 25 as the right child of 20

Binary tree after insertion:

40

50

80 30 5

10

35
20 60

25 65

40

50

80 30 5

10

35
20 60

65

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 44

DELETING A NODE FROM BST:

3 CASES:

 CASE 1: Deleting a leaf node.

 CASE 2: Deleting a non leaf node of degree1.

 CASE 3: Deleting a non leaf node of degree2.

CASE 1: Deleting a leaf node.

 If the node to be deleted is a left child then

 Parent->lchild=NULL

If the node to be deleted is a rchild the parent->rchild= NULL

Free (p)

CASE 2 :Non-leaf node with degree 1.

 Non leaf node with degree1

The child of the deleted node have to take the position of its parent.

30

40

80 2

5

30

80

2

5

Delete(40)

30

40

80 35 2

5

30

50

80 2

5

Delete(35)

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 45

CASE 3: Non leaf node with degree2.

Take either the largest node (it is inorder predecessor) in the left subtree or the smallest node

(then it is inorder successor) in the right subtree and replace the node to be deleted with this

node and delete the in order predecessor or successor.

 Both the largest element in the left subtree & the smallest element in the right subtree can have

the degree atmost “one”

5. Write an algorithm to find a node in a tree. Show the resulting binary search tree if

the elements are added into it in the following order:

 50, 20, 55, 80, 53, 30, 60, 25, 5, …

BINARY SEARCH TREE:-

 A binary search tree is a binary tree, it may be empty, if it is not empty then it satisfies

the following properties.

1. Every element has a key and the keys are distinct.

2. The keys in the left subtree are smaller than the key in the root.

3. Keys in the right subtree are larger than the key in the root.

4. Left and right subtrees are also binary search tree.

Algorithm to add a node into a BST:

Void insert(int x)

{

 node * prev,*curr; /*prev is the parent of curr*/

5

40

80 35

2

30

40

80 35 2

5

35

40

80 2

5

Delete(30)

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 46

 curr=root;

 prev=NULL;

 /* search for x */

 while(curr!=NULL)

 {

prev=curr;

 if(x==curr->data)

 {

 printf(“duplicate value”);

 return;

 }

 elseif(x<curr->data)

 curr=curr->lchild;

else

curr=curr->rchild;

}

/*perform insertion*/

curr=(node*)malloc(sizeof(node));

curr->data=x;

curr->lchilde=curr->rchild=NULL;

if(root==NULL)

root=curr;

else if(x<prev->data)

prev->lchild=curr;

else

prev->rchild=curr;

 }

Binary Search Tree for the given numbers:

.

50

20 55

5 30

25

53 80

60

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 47

6. Write an algorithm to delete a node from a tree (it may contain 0, 1, or 2 children.

DELETING A NODE FROM BST:

3 CASES:

 CASE 1: Deleting a leaf node.

 CASE 2: Deleting a non leaf node of degree1.

 CASE 3: Deleting a non leaf node of degree2.

CASE 1: Deleting a leaf node.

 If the node to be deleted is a left child then

 Parent->lchild=NULL

If the node to be deleted is a rchild the parent->rchild= NULL

Free (p)

CASE 2 :Non-leaf node with degree 1.

 Non leaf node with degree1

30

40

80 2

5

30

80

2

5

Delete(40)

30

40

80 35 2

5

30

50

80 2

5

Delete(35)

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 48

The child of the deleted node have to take the position of its parent.

CASE 3: Non leaf node with degree2.

Take either the largest node (it is inorder predecessor) in the left subtree

The smallest node (then it is inorder successor) in the right subtree

 Both the largest element in the left subtree & the smallest element in the right subtree can have

the degree atmost “one”.

7. Explain the steps involved in converting the general tree to a binary tree. Convert the

following general tree to a binary tree.

5

40

80 35

2

30

40

80 35 2

5

35

40

80 2

5

Delete(30)

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 49

Conversion of General Tree to Binary Tree:

 The left most child becomes the left child

 Other siblings become the right child of left most child.

Algorithm:

Step 1: Create a head node for the binary tree and push the address and level number onto the

stack.

Step 2: Repeat through step 6 while there is data.

Step 3: Input the current node description in preorder (address& level)

Step 4: Create a treenode and initialize its contents.

Step 5: If the level number of the current node > the level number of the node at the top of the

stack then

 Connect the current node as the left child of the node at the top of the stack

Else

 Remove all the nodes from the stack whose level number is greater the level number of

the current node & connect the current node as a right child of the node at the top of the stack.

Step 6: Push the current node description onto the stack.

Binary tree for the given general tree:

a

d
c

b

g f e h i

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 50

8. Construct a binary tree given the preorder and in order sequences as below

preorder: A B D G C E H I F, Inorder : D G B A H E I C F

a

b

c

d

g

f

e

i

h

A

E

C

G

D

B

I H

F

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 51

9. Prove “For any non-empty binary tree T, if n0 is the number of leaf nodes and n2 is the

number of nodes of degree 2, then n0= n2+1”

Proof

Let n be the total no of nodes in the binary tree let n, be the no of nodes of degree 1

 n= n0+ n1+n2-------- A

All the nodes except the root node has a branch coming into it. Let B be the no of branches in

binary tree

n = B+1-------

(deg=0)

Nodes of degree-1 will have 1 branch

Nodes of degree – 2 will have 2 branch

B= 0.n0 + 1.n1 + 2.n2

B= n1 + 2n2----

Substitute eq (2) in (1)

 n = n1+2n2+1---B

equate A and B

n0 + n1 + n2 = n1 + 2n2 + 1

n0 = 2n2- n2+1

n0 = n2 +1

Hence proved.

10.What do you mean by a threaded binary tree? Write the algorithm for in order

traversal of a threaded binary tree. Trace the algorithm with an example.

In a binary tree, all the leaf nodes are having the left child and right child fields to be NULL.

Here more memory space is wasted to store the NULL values. These NULL pointers can be

utilized to store useful information. The NULL left child is used to point the in order

predecessor and the NULL right child is used to store the in order successor. This is called as

in order threaded binary tree.

Structure of a node:

LTHREAD LLINK DATA RLINK RTHREAD

if LTHREAD= 0, LLINK points to the left child;

if LTHREAD = 1, LLINK points to the in-order predecessor;

if RTHREAD = 0, RLINK points to the right child;

if RTHREAD= 1, RLINK points to the in-order successor.

1

2

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 52

HEAD

Conventionally, HEAD.RLINK = HEAD and HEAD.RTAG = 0 for any threaded binary

tree. The tree shown earlier would therefore be represented as:

Algorithm

Step-1: For the current node check whether it has a left child which is not there in the visited list.

If it has then go to step-2 or else step-3.

Step-2: Put that left child in the list of visited nodes and make it your current node in

consideration. Go to step-6.

Step-3: For the current node check whether it has a right child. If it has then go to step-4 else go

to step-5

Step-4: Make that right child as your current node in consideration. Go to step-6.

Step-5: Check for the threaded node and if its there make it your current node.

Step-6: Go to step-1 if all the nodes are not over otherwise quit

In order Traversal for the above threaded binary tree: D B A E G C H F J

11. What is the representation of binary tree in memory? Explain in detail. / Explain the

B-tree with insertion and deletion operations.

Representation of Binary tree in memory:

1. Array Representation

2. Linked List Representation

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 53

Array Representation:

o The root node is stored at location 0.

o Left child of the node at location i is stored at location 2i+1

o Right child of the node at location i is stored at location 2i+2

If the child is in ith location, its parent will be in (i-1)/2 thlocation.

Linked List Representation:

Structure of a node:

 Structtreenode

 {

 Structtreenode *leftchild;

 Int data;

 Structtreenode *rightchild;

 };

Example:-

Node

http://www.boundscheck.com/wp-content/uploads/2010/09/tree-3.png
http://www.boundscheck.com/wp-content/uploads/2010/09/tree-3.png
http://www.boundscheck.com/wp-content/uploads/2010/09/tree-3.png
http://www.boundscheck.com/wp-content/uploads/2010/09/tree-5.jpg
http://www.boundscheck.com/wp-content/uploads/2010/09/tree-4.jpg
http://www.boundscheck.com/wp-content/uploads/2010/09/tree-4.jpg

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 54

 12.Define expression tree. How to construct an expression tree for the post fix expression?

/ Write steps involved in constructing expression tree.

Expression tree:

An expression tree is built up from the simple operands and operators of an(arithmetic or logical)

expression by placing the simple operands as the leaves of a binary tree and the operators as the

interior nodes.

Example:

(a+b*c)/(d-e)

Expression Tree:

Inorder traversal

The inorder traversal of a binary tree is performed as

 traverse the left subtree in inorder.

 Visit the root.

 Traverse the right subtree in inorder.

Recursive Routine for Inorder traversal

Void inorder(Tree T)

{

If(T!=NULL)

{

Inorder(T->left);

Printelement(t->element);

Inorder(t->right);

}

b c

* a

+

d e

-

/

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 55

}

In order traversal for the given expression tree: a + b * c / d - e

Preorder traversal

The preorder traversal of a binary tree is performed as

 Visit the root.

 traverse the left subtree in inorder.

 Traverse the right subtree in inorder.

Recursive Routine for preorder traversal

Void preorder(Tree T)

{

If(T!=NULL)

{

Printelement(t->element);

preorder(T->left);

preorder(t->right);

}

}

Pre order traversal for the given expression tree:/ + a * b c - d e

Postorder traversal

The postorder traversal of a binary tree is performed as

 traverse the left subtree in inorder.

 Traverse the right subtree in inorder.

 Visit the root.

Recursive Routine for postorder traversal

Void postorder(Tree T)

{

If(T!=NULL)

{

postorder(T->left);

postorder(t->right);

Printelement(t->element);

}

}

Post order traversal for the given expression tree: a b c * + d e - /

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 56

UNIT-III

1. Construct a minimum spanning tree using Kruskal’s algorithm with your own

example

Kruskal's algorithm to find the minimum cost spanning tree uses the greedy approach. This

algorithm treats the graph as a forest and every node it has as an individual tree. A tree connects

to another only and only if, it has the least cost among all available options and does not violate

MST properties.

To understand Kruskal's algorithm let us consider the following example −

Step 1 - Remove all loops and Parallel Edges

Remove all loops and parallel edges from the given graph.

In case of parallel edges, keep the one which has the least cost associated and remove all others.

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 57

Step 2 - Arrange all edges in their increasing order of weight

The next step is to create a set of edges and weight, and arrange them in an ascending order of

weightage (cost).

Step 3 - Add the edge which has the least weightage

Now we start adding edges to the graph beginning from the one which has the least weight.

Throughout, we shall keep checking that the spanning properties remain intact. In case, by

adding one edge, the spanning tree property does not hold then we shall consider not to include

the edge in the graph.

The least cost is 2 and edges involved are B,D and D,T. We add them. Adding them does not

violate spanning tree properties, so we continue to our next edge selection.

Next cost is 3, and associated edges are A,C and C,D. We add them again −

Next cost in the table is 4, and we observe that adding it will create a circuit in the graph. −

We ignore it. In the process we shall ignore/avoid all edges that create a circuit.

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 58

We observe that edges with cost 5 and 6 also create circuits. We ignore them and move on.

Now we are left with only one node to be added. Between the two least cost edges available 7

and 8, we shall add the edge with cost 7.

By adding edge S,A we have included all the nodes of the graph and we now have minimum cost

spanning tree.

2. How will find the shortest path between two given vertices using Dijikstra’s

algorithm? Explain the pseudo code with an example

a

d c e

b
4

3 2

7 4

5
6

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 59

Dijkstra’s algorithm finds the shortest path from a source vertex(v) to all the remaining

 vertices.

 Steps:

1. Initialize s[i] =false &dist[i] = length[v][i] for all i=0 to n-1.

2. Assign s[v] = true &dist[v] = 0;

3. Choose a vertex u with minimum dist& s[u] = false

4. Put s[u] = true.

5. Modify dist[w] for all vertices with s[w]= false

Dist[w] = min { dist[w], dist[u] + length[u][w]}

6. repeat the steps 3 to 5 until the shortest path is found for all the remaining vertices.

 Ans:

a-b = 4

a-c = 3

a-d = 2

a-e = 6

3. Discuss about the algorithm and pseudocode to find minimum spanning tree using

Prim’s algorithm.

Prim's algorithm to find minimum cost spanning tree (as Kruskal's algorithm) uses the

greedy approach. Prim's algorithm shares a similarity with the shortest path first algorithms.

Prim's algorithm, in contrast with Kruskal's algorithm, treats the nodes as a single tree and

keeps on adding new nodes to the spanning tree from the given graph.

To contrast with Kruskal's algorithm and to understand Prim's algorithm better, we shall use

the same example −

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 60

Step 1 - Remove all loops and parallel edges

Remove all loops and parallel edges from the given graph. In case of parallel edges, keep the one

which has the least cost associated and remove all others.

Step 2 - Choose any arbitrary node as root node

In this case, we choose S node as the root node of Prim's spanning tree. This node is arbitrarily

chosen, so any node can be the root node. One may wonder why any video can be a root node.

So the answer is, in the spanning tree all the nodes of a graph are included and because it is

connected then there must be at least one edge, which will join it to the rest of the tree.

Step 3 - Check outgoing edges and select the one with less cost

After choosing the root node S, we see that S,A and S,C are two edges with weight 7 and 8,

respectively. We choose the edge S,A as it is lesser than the other.

Now, the tree S-7-A is treated as one node and we check for all edges going out from it. We

select the one which has the lowest cost and include it in the tree.

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 61

After this step, S-7-A-3-C tree is formed. Now we'll again treat it as a node and will check all the

edges again. However, we will choose only the least cost edge. In this case, C-3-D is the new

edge, which is less than other edges' cost 8, 6, 4, etc.

After adding node D to the spanning tree, we now have two edges going out of it having the

same cost, i.e. D-2-T and D-2-B. Thus, we can add either one. But the next step will again yield

edge 2 as the least cost. Hence, we are showing a spanning tree with both edges included.

4. Write Floyd’s algorithm for the all-pairs shortest path problem and explain with an

example

1

2

3

4

5

5

6

9

2

3
6

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 62

Algorithm floyd(w[1..n, 1..n])

{

D(0) = A

For k = 1 to n do

For i = 1 to n do

For j = 1 to n do

Dk[I,j] = min{Dk-1[I,j] or Dk-1[I,j] and Dk-1[k,j]

Return D(n)

}

Ans:

1 2 3 4 5

 1 0 5 6 9 8

 2 5 0 5 4 3

 3 6 5 0 8 2

 4 9 4 8 0 6

 5 8 3 2 6 0

5. Explain in detail about Bellman-Ford algorithm with suitable example

MST solves the problem of finding a minimum total weight subset of edges that spans all the

vertices. Another common graph problem is to find the shortest paths to all reachable vertices

from a given source. We have already seen how to solve this problem in the case where all the

edges have the same weight (in which case the shortest path is simply the minimum number of

edges) using BFS. Now we will examine two algorithms for finding single source shortest paths

for directed graphs when the edges have different weights - Bellman-Ford and Dijkstra's

algorithms. Several related problems are:

 Single destination shortest path - find the transpose graph (i.e. reverse the edge

directions) and use single source shortest path

 Single pair shortest path (i.e. a specific destination) - asymptotically this problem can be

solved no faster than simply using single source shortest path algorithms to all the

vertices

 All pair shortest paths - one technique is to use single source shortest path for each

vertex, but later we will see a more efficient algorithm

Single Source Shortest Path

Problem
Given a directed graph G(V,E) with weighted edgesw(u,v), define the path weight of a path p as

For a given source vertex s, find the minimum weight paths to every vertex reachable from s

denoted

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 63

The final solution will satisfy certain caveats:

 The graph cannot contain any negative weight cycles (otherwise there would be no

minimum path since we could simply continue to follow the negative weight cycle

producing a path weight of -∞).

 The solution cannot have any positive weight cycles (since the cycle could simply be

removed giving a lower weight path).

 The solution can be assumed to have no zero weight cycles (since they would not affect

the minimum value).

Therefore given these caveats, we know the shortest paths must be acyclic (with ≤ |V| distinct

vertices) ⇒ ≤ |V| - 1 edges in each path.

Generic Algorithm
The single source shortest path algorithms use the same notation as BFS (see lecture 17) with

predecessor π and distance d fields for each vertex. The optimal solution will have v.d = δ(s,v)

for all v∈V.

The solutions utilize the concept of edge relaxation which is a test to determine whether going

through edge (u,v) reduces the distance to v and if so update v.π and v.d. This is accomplished

using the condition

Bellman-Ford Algorithm

The Bellman-Ford algorithm uses relaxation to find single source shortest paths on directed

graphs that may contain negative weight edges. The algorithm will also detect if there are any

negative weight cycles (such that there is no solution).

BELLMAN-FORD(G,w,s)

 INITIALIZE-SINGLE-SOURCE(G,s)

for i = 1 to |G.V|-1

for each edge (u,v) ∈ G.E

RELAX(u,v,w)

for each edge (u,v) ∈ G.E if v.d>u.d + w(u,

return FALSE

return TRUE

INITIALIZE-SINGLE-SOURCE(G,s)

for each vertex v ∈ G.V

v.d = ∞

v.pi = NIL

s.d = 0

http://faculty.ycp.edu/~dbabcock/PastCourses/cs360/lectures/lecture17.html

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 64

RELAX(u,v,w) if v.d>u.d + w(u,v)

v.d = u.d + w(u,v)

v.pi = u

Basically the algorithm works as follows:

1. Initialize d's, π's, and set s.d = 0 ⇒ O(V)

2. Loop |V|-1 times through all edges checking the relaxation condition to compute

minimum distances ⇒ (|V|-1) O(E) = O(VE)

3. Loop through all edges checking for negative weight cycles which occurs if any of the

relaxation conditions fail ⇒ O(E)

The run time of the Bellman-Ford algorithm is O(V + VE + E) = O(VE).

Note that if the graph is a DAG (and thus is known to not have any cycles), we can make

Bellman-Ford more efficient by first topologically sortingG (O(V+E)), performing the same

initialization (O(V)), and then simply looping through each vertex uin topological order relaxing

only the edges in Adj[u] (O(E)). This method only takes O(V + E) time. This procedure (with a

few slight modifications) is useful for finding critical paths for PERT charts.

6. Given the following directed graph

Using vertex 5 as the source (setting its distance to 0), we initialize all the other distances to ∞.

Iteration 1: Edges (u5,u2) and (u5,u4) relax updating the distances to 2 and 4

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 65

Iteration 2: Edges (u2,u1), (u4,u2) and (u4,u3) relax updating the distances to 1, 2, and 4

respectively. Note edge (u4,u2) finds a shorter path to vertex 2 by going through vertex 4

Iteration 3: Edge (u2,u1) relaxes (since a shorter path to vertex 2 was found in the previous

iteration) updating the distance to 1

Iteration 4: No edges relax

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 66

The final shortest paths from vertex 5 with corresponding distances is

Negative cycle checks: We now check the relaxation condition one additional time for each edge.

If any of the checks pass then there exists a negative weight cycle in the graph.

v3.d>u1.d + w(1,3) ⇒ 4 ≯ 6 + 6 = 12 ✓

v4.d>u1.d + w(1,4) ⇒ 2 ≯ 6 + 3 = 9 ✓

v1.d>u2.d + w(2,1) ⇒ 6 ≯ 3 + 3 = 6 ✓

v4.d>u3.d + w(3,4) ⇒ 2 ≯ 3 + 2 = 5 ✓

v2.d>u4.d + w(4,2) ⇒ 3 ≯ 2 + 1 = 3 ✓

v3.d>u4.d + w(4,3) ⇒ 3 ≯ 2 + 1 = 3 ✓

v2.d>u5.d + w(5,2) ⇒ 3 ≯ 0 + 4 = 4 ✓

v4.d>u5.d + w(5,4) ⇒ 2 ≯ 0 + 2 = 2 ✓

Note that for the edges on the shortest paths the relaxation criteria gives equalities.

Additionally, the path to any reachable vertex can be found by starting at the vertex and

following the π's back to the source. For example, starting at vertex 1, u1.π = 2, u2.π = 4, u4.π = 5

⇒ the shortest path to vertex 1 is {5,4,2,1}

7. Describe in detail about depth first and breadth first traversals with appropriate

example

Breadth First Search

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 67

This is a very different approach for traversing the graph nodes. The aim of BFS algorithm

is to traverse the graph as close as possible to the root node. Queue is used here. If we do the

breadth first traversal of the above graph and print the visited node as the output, it will print the

following output. “A B C D E F G”. The BFS visits the nodes level by level, so it will start with

level A which is the root node, and then it moves to the next levels which are B, C and D, then

the last levels which are D,E,F and F.

Breadth First Traversal:
 1. Visit vertex v.

 2. Visit all the unvisited vertices that are adjacent to v.

 3. Unvisited vertices that are adjacent to the newly visited vertices are visited.

Algorithmic Steps

Step 1: Push the root node in the Queue.

Step 2: Loop until the queue is empty.

Step 3: Remove the node from the Queue.

Step 4: If the removed node has unvisited child nodes, mark them as visited and insert the

unvisited children in the queue.

Algorithm:

bfs ()

{

mark v visited;

enqueue (v);

while (not is_empty (Q))

{

x = front (Q);

dequeue (Q);

for each y adjacent to x if y unvisited {

mark y visited;

enqueue (y);

insert ((x, y) in T);

}

}

}

Depth First Traversal

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 68

The aim of DFS traversal is to traverse the graph in such a way that it tries to go far from

the root node. Stack is used in the implementation of the depth first search. If we do the

depth first traversal of the above graph and print the visited node, it will be “A B E F C

D”. DFS visits the root node and then its children nodes until it reaches the end node, i.e. E

and F nodes, then moves up to the parent nodes.

Depth First Traversal.

 1. Visit the vertex v.

 2. Visit an unvisited vertex w that is adjacent to v.

 3. Initiate depth first search from w.

8. Explain in detail about topological sorting with an example

Topological Sorting

Topological sorting for Directed Acyclic Graph (DAG) is a linear ordering of vertices

such that for every directed edge uv, vertex u comes before v in the ordering. Topological

Sorting for a graph is not possible if the graph is not a DAG.

For example, a topological sorting of the following graph is “5 4 2 3 1 0”. There can be

more than one topological sorting for a graph. For example, another topological sorting of the

following graph is “4 5 2 3 1 0”. The first vertex in topological sorting is always a vertex with in-

degree as 0 (a vertex with no incoming edges).

Topological Sorting vs Depth First Traversal (DFS):

In DFS, we print a vertex and then recursively call DFS for its adjacent vertices. In

topological sorting, we need to print a vertex before its adjacent vertices. For example, in the

given graph, the vertex ‘5’ should be printed before vertex ‘0’, but unlike DFS, the vertex ‘4’

should also be printed before vertex ‘0’. So Topological sorting is different from DFS. For

example, a DFS of the shown graph is “5 2 3 1 0 4”, but it is not a topological sorting

https://www.geeksforgeeks.org/depth-first-traversal-for-a-graph/
https://www.geeksforgeeks.org/depth-first-traversal-for-a-graph/

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 69

9. Explain in detail about the Single-Source Shortest Paths in DAGs

By relaxing the edges in a DAG according to their topological sort of its vertices. We

can achieve Θ(n+m) time complexity.

 DAG-SHORTEST (G,w,s)

 Topologically sort the vertices of G

 INITIALIZE (G,s)

for each vertex u taken in topologically sorted (increasing) order

do for v∈Adj [u]

do RELAX (u,v,w)

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 70

UNIT-IV

1. Discuss briefly the sequence of steps in designing and analyzing an algorithm.

An algorithm is a set of steps of operations to solve a problem performing calculation,

data processing, and automated reasoning tasks. An algorithm is an efficient method that

can be expressed within finite amount of time and space.An algorithm is the best way to

represent the solution of a particular problem in a very simple and efficient way. If we

have an algorithm for a specific problem, then we can implement it in any programming

language, meaning that the algorithm is independent from any programming

languages.

Algorithm Design

The important aspects of algorithm design include creating an efficient algorithm

to solve a problem in an efficient way using minimum time and space.To solve a

problem, different approaches can be followed. Some of them can be efficient with

respect to time consumption, whereas other approaches may be memory efficient.

However, one has to keep in mind that both time consumption and memory usage cannot

be optimized simultaneously. If we require an algorithm to run in lesser time, we have to

invest in more memory and if we require an algorithm to run with lesser memory, we

need to have more time.

Problem Development Steps

The following steps are involved in solving computational problems.

 Problem definition

 Development of a model

 Specification of an Algorithm

 Designing an Algorithm

 Checking the correctness of an Algorithm

 Analysis of an Algorithm

 Implementation of an Algorithm

 Program testing

 Documentation

Characteristics of Algorithms

The main characteristics of algorithms are as follows −

 Algorithms must have a unique name

 Algorithms should have explicitly defined set of inputs and outputs

 Algorithms are well-ordered with unambiguous operations

 Algorithms halt in a finite amount of time. Algorithms should not run for infinity, i.e., an

algorithm must end at some point

In theoretical analysis of algorithms, it is common to estimate their complexity in the asymptotic

sense, i.e., to estimate the complexity function for arbitrarily large input. The term "analysis of

algorithms" was coined by Donald Knuth.

Algorithm analysis is an important part of computational complexity theory, which provides

theoretical estimation for the required resources of an algorithm to solve a specific computational

problem. Most algorithms are designed to work with inputs of arbitrary length. Analysis of

algorithms is the determination of the amount of time and space resources required to execute it.

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 71

Usually, the efficiency or running time of an algorithm is stated as a function relating the input

length to the number of steps, known as time complexity, or volume of memory, known as

space complexity.

The Need for Analysis

By considering an algorithm for a specific problem, we can begin to develop pattern recognition

so that similar types of problems can be solved by the help of this algorithm.

Algorithms are often quite different from one another, though the objective of these algorithms

are the same. For example, we know that a set of numbers can be sorted using different

algorithms. Number of comparisons performed by one algorithm may vary with others for the

same input. Hence, time complexity of those algorithms may differ. At the same time, we need to

calculate the memory space required by each algorithm.

Analysis of algorithm is the process of analyzing the problem-solving capability of the algorithm

in terms of the time and size required (the size of memory for storage while implementation).

However, the main concern of analysis of algorithms is the required time or performance.

Generally, we perform the following types of analysis −

 Worst-case − The maximum number of steps taken on any instance of size a.

 Best-case − The minimum number of steps taken on any instance of size a.

 Average case − An average number of steps taken on any instance of size a.

 Amortized − A sequence of operations applied to the input of size a averaged over time.

To solve a problem, we need to consider time as well as space complexity as the program may

run on a system where memory is limited but adequate space is available or may be vice-versa.

In this context, if we compare bubble sort and merge sort. Bubble sort does not require

additional memory, but merge sort requires additional space. Though time complexity of bubble

sort is higher compared to merge sort, we may need to apply bubble sort if the program needs to

run in an environment, where memory is very limited

2. Explain in detail about asymptotic notations used in algorithm analysis

In designing of Algorithm, complexity analysis of an algorithm is an essential aspect.

Mainly, algorithmic complexity is concerned about its performance, how fast or slow it

works.The complexity of an algorithm describes the efficiency of the algorithm in terms of

the amount of the memory required to process the data and the processing time.

Complexity of an algorithm is analyzed in two perspectives: Time and Space.

Time Complexity

It’s a function describing the amount of time required to run an algorithm in terms of the

size of the input. "Time" can mean the number of memory accesses performed, the number of

comparisons between integers, the number of times some inner loop is executed, or some other

natural unit related to the amount of real time the algorithm will take.

Space Complexity

It’s a function describing the amount of memory an algorithm takes in terms of the size of

input to the algorithm. We often speak of "extra" memory needed, not counting the memory

needed to store the input itself. Again, we use natural (but fixed-length) units to measure this.

Space complexity is sometimes ignored because the space used is minimal and/or obvious,

however sometimes it becomes as important an issue as time.

Asymptotic Notations

Execution time of an algorithm depends on the instruction set, processor speed, disk I/O

speed, etc. Hence, we estimate the efficiency of an algorithm asymptotically.

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 72

Time function of an algorithm is represented by T(n), where n is the input size.

Different types of asymptotic notations are used to represent the complexity of an algorithm.

Following asymptotic notations are used to calculate the running time complexity of an

algorithm.

 O − Big Oh

 Ω − Big omega

 θ − Big theta

 o − Little Oh

 ω − Little omega

O: Asymptotic Upper Bound

‘O’ (Big Oh) is the most commonly used notation. A function f(n) can be represented is the order

of g(n) that is O(g(n)), if there exists a value of positive integer n as n0 and a positive constant c

such that −f(n)⩽c.g(n) for n>n0 in all case

Hence, function g(n) is an upper bound for function f(n), as g(n) grows faster than f(n).

Example

Let us consider a given function, f(n)=4.n3+10.n2+5.n+1, Considering g(n)=n3

f(n)⩽5.g(n) for all the values of n>2

Hence, the complexity of f(n) can be represented as O(g(n)) , i.e. O(n3)

Ω: Asymptotic Lower Bound

We say that f(n)=Ω(g(n)) when there exists constant c that f(n)⩾c.g(n) for all sufficiently

large value of n. Here n is a positive integer. It means function g is a lower bound for

function f; after a certain value of n, f will never go below g.

Example

Let us consider a given function, f(n)=4.n3+10.n2+5.n+1

.Considering g(n)=n3 , f(n)⩾4.g(n) for all the values of n>0

Hence, the complexity of f(n) can be represented as Ω(g(n)) , i.e. Ω(n3)

θ: Asymptotic Tight Bound We say that f(n)=θ(g(n))

When there exist constants c1 and c2 that c1.g(n)⩽f(n)⩽c2.g(n) for all sufficiently large value of

n. Here n is a positive integer. This means function g is a tight bound for function f.

Example

Let us consider a given function, f(n)=4.n3+10.n2+5.n+1

Considering g(n)=n3, 4.g(n)⩽f(n)⩽5.g(n)for all the large values of n.

Hence, the complexity of f(n) can be represented as θ(g(n)) , i.e. θ(n3)

.O - Notation

The asymptotic upper bound provided by O-notation may or may not be asymptotically tight.

The bound 2.n2=O(n2)is asymptotically tight, but the bound 2.n=O(n2)is not.

We use o-notation to denote an upper bound that is not asymptotically tight.We formally define

o(g(n)) (little-oh of g of n) as the set f(n) = o(g(n)) for any positive constant c>0and there exists

a value n0>0, such that 0⩽f(n)⩽c.g(n)

Intuitively, in the o-notation, the function f(n) becomes insignificant relative to g(n) as n

approaches infinity; that is,

limn→∞(f(n)g(n))=0

Example

Let us consider the same function, f(n)=4.n3+10.n2+5.n+1

Considering g(n)=n4 limn→∞(4.n3+10.n2+5.n+1n4)=0

Hence, the complexity of f(n) can be represented as o(g(n)), i.e. o(n4)

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 73

ω – Notation

We use ω-notation to denote a lower bound that is not asymptotically tight. Formally, however,

we define ω(g(n)) (little-omega of g of n) as the set f(n) = ω(g(n)) for any positive constant C >

0 and there exists a value n0>0

, such that 0⩽c.g(n)<f(n) ,For example, n22=ω(n)

, but n22≠ω(n2). The relation f(n)=ω(g(n))implies that the following limit exists

limn→∞(f(n)g(n))=∞

That is, f(n) becomes arbitrarily large relative to g(n) as n approaches infinity.

Example

Let us consider same function, f(n)=4.n3+10.n2+5.n+1

Considering g(n)=n2

limn→∞(4.n3+10.n2+5.n+1n2)=∞

Hence, the complexity of f(n) can be represented as o(g(n)), i.e. ω(n2)

Apriori and Apostiari Analysis

Apriori analysis means, analysis is performed prior to running it on a specific system.This

analysis is a stage where a function is defined using some theoretical model. Hence, we

determine the time and space complexity of an algorithm by just looking at the algorithm rather

than running it on a particular system with a different memory, processor, and compiler.

Apostiari analysis of an algorithm means we perform analysis of an algorithm only after running

it on a system. It directly depends on the system and changes from system to system.

In an industry, we cannot perform Apostiari analysis as the software is generally made for an

anonymous user, which runs it on a system different from those present in the industry.

In Apriori, it is the reason that we use asymptotic notations to determine time and space

complexity as they change from computer to computer; however, asymptotically they are the

same

3. Explain in detail about divide and conquer approach

Many algorithms are recursive in nature to solve a given problem recursively dealing with sub-

problems.

In divide and conquer approach, a problem is divided into smaller problems, then the smaller

problems are solved independently, and finally the solutions of smaller problems are combined

into a solution for the large problem.

Generally, divide-and-conquer algorithms have three parts −

 Divide the problem into a number of sub-problems that are smaller instances of the same

problem.

 Conquer the sub-problems by solving them recursively. If they are small enough, solve

the sub-problems as base cases.

 Combine the solutions to the sub-problems into the solution for the original problem.

Pros and cons of Divide and Conquer Approach

Divide and conquer approach supports parallelism as sub-problems are independent. Hence, an

algorithm, which is designed using this technique, can run on the multiprocessor system or in

different machines simultaneously.

In this approach, most of the algorithms are designed using recursion, hence memory

management is very high. For recursive function stack is used, where function state needs to be

stored.

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 74

Application of Divide and Conquer Approach

Following are some problems, which are solved using divide and conquer approach.

 Finding the maximum and minimum of a sequence of numbers

 Strassen’s matrix multiplication

 Merge sort

 Binary search

4. Describe in detail about merge sort with an example

Problem Statement

The problem of sorting a list of numbers lends itself immediately to a divide-and-conquer

strategy: split the list into two halves, recursively sort each half, and then merge the two sorted

sub-lists.

Solution

In this algorithm, the numbers are stored in an array numbers[]. Here, p and q represents the start

and end index of a sub-array.

Algorithm: Merge-Sort (numbers[], p, r)
if p < r then

q = ⌊(p + q) / 2⌋
Merge-Sort (numbers[], p, q)

 Merge-Sort (numbers[], q + 1, r)

 Merge (numbers[], p, q, r)

Function: Merge (numbers[], p, q, r)
n1 = q – p + 1

n2 = r – q

declareleftnums[1…n1 + 1] and rightnums[1…n2 + 1] temporary arrays

for i = 1 to n1

leftnums[i] = numbers[p + i - 1]

for j = 1 to n2

rightnums[j] = numbers[q+ j]

leftnums[n1 + 1] = ∞

rightnums[n2 + 1] = ∞

i = 1

j = 1

for k = p to r

ifleftnums[i] ≤ rightnums[j]

numbers[k] = leftnums[i]

 i = i + 1

else

numbers[k] = rightnums[j]

 j = j + 1

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 75

Example

In the following example, we have shown Merge-Sort algorithm step by step. First, every

iteration array is divided into two sub-arrays, until the sub-array contains only one element.

When these sub-arrays cannot be divided further, then merge operations are performed.

5. What do you meant by Quick Sort? Explain

It is used on the principle of divide-and-conquer. Quick sort is an algorithm of choice in

many situations as it is not difficult to implement. It is a good general purpose sort and it

consumes relatively fewer resources during execution.

Advantages

 It is in-place since it uses only a small auxiliary stack.

 It requires only n (log n) time to sort n items.

 It has an extremely short inner loop.

 This algorithm has been subjected to a thorough mathematical analysis, a very precise

statement can be made about performance issues.

Disadvantages

 It is recursive. Especially, if recursion is not available, the implementation is extremely

complicated.

 It requires quadratic (i.e., n2) time in the worst-case.

 It is fragile, i.e. a simple mistake in the implementation can go unnoticed and cause it to

perform badly.

Quick sort works by partitioning a given array A[p ... r] into two non-empty sub array A[p ... q]

and A[q+1 ... r] such that every key in A[p ... q] is less than or equal to every key in A[q+1 ... r].

Then, the two sub-arrays are sorted by recursive calls to Quick sort. The exact position of the

partition depends on the given array and index q is computed as a part of the partitioning

procedure.

Algorithm: Quick-Sort (A, p, r)
if p < r then

 q Partition (A, p, r)

 Quick-Sort (A, p, q)

 Quick-Sort (A, q + r, r)

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 76

Note that to sort the entire array, the initial call should be Quick-Sort (A, 1, length[A])

As a first step, Quick Sort chooses one of the items in the array to be sorted as pivot. Then, the

array is partitioned on either side of the pivot. Elements that are less than or equal to pivot will

move towards the left, while the elements that are greater than or equal to pivot will move

towards the right.

Partitioning the Array

Partitioning procedure rearranges the sub-arrays in-place.

Function: Partition (A, p, r)
x ← A[p]

i ← p-1

j ← r+1

while TRUE do

 Repeat j ← j - 1

until A[j] ≤ x

 Repeat i← i+1

until A[i] ≥ x

if i < j then

exchange A[i] ↔ A[j]

else

return j

Analysis

The worst case complexity of Quick-Sort algorithm is O(n2). However using this technique, in

average cases generally we get the output in O(n log n) time

6. Describe in detail about binary search with an example

Binary search can be performed on a sorted array. In this approach, the index of an element x is

determined if the element belongs to the list of elements. If the array is unsorted, linear search is

used to determine the position.

Solution

In this algorithm, we want to find whether element x belongs to a set of numbers stored in an

array numbers[]. Where l and r represent the left and right index of a sub-array in which

searching operation should be performed.

Algorithm: Binary-Search(numbers[], x, l, r)
if l = r then

return l

else

m := ⌊(l + r) / 2⌋
if x ≤ numbers[m] then

return Binary-Search(numbers[], x, l, m)

else

return Binary-Search(numbers[], x, m+1, r)

Analysis

Linear search runs in O(n) time. Whereas binary search produces the result in O(log n) time

Let T(n) be the number of comparisons in worst-case in an array of n elements.

Hence,

T(n)={0T(n2)+1ifn=1otherwise

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 77

Using this recurrence relation T(n)=logn

.

Therefore, binary search uses O(logn)

time.

Example

In this example, we are going to search element 63.

7.Explain in detail about Greedy Algorithms.

Among all the algorithmic approaches, the simplest and straightforward approach is the

Greedy method. In this approach, the decision is taken on the basis of current available

information without worrying about the effect of the current decision in future.

Greedy algorithms build a solution part by part, choosing the next part in such a way, that it

gives an immediate benefit.

This approach never reconsiders the choices taken previously. This approach is mainly

used to solve optimization problems. Greedy method is easy to implement and quite efficient in

most of the cases. Hence, we can say that Greedy algorithm is an algorithmic paradigm based on

heuristic that follows local optimal choice at each step with the hope of finding global optimal

solution.

In many problems, it does not produce an optimal solution though it gives an approximate (near

optimal) solution in a reasonable time.

Components of Greedy Algorithm

Greedy algorithms have the following five components −

 A candidate set − A solution is created from this set.

 A selection function − Used to choose the best candidate to be added to the solution.

 A feasibility function − Used to determine whether a candidate can be used to contribute

to the solution.

 An objective function − Used to assign a value to a solution or a partial solution.

 A solution function − Used to indicate whether a complete solution has been reached.

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 78

Areas of Application

Greedy approach is used to solve many problems, such as

 Finding the shortest path between two vertices using Dijkstra’s algorithm.

 Finding the minimal spanning tree in a graph using Prim’s /Kruskal’s algorithm, etc.

Where Greedy Approach Fails

In many problems, Greedy algorithm fails to find an optimal solution, moreover it may produce a

worst solution. Problems like Travelling Salesman and Knapsack cannot be solved using this

approach.

8.Discuss in detail about the Knapsack Problem

The Greedy algorithm could be understood very well with a well-known problem referred to as

Knapsack problem. Although the same problem could be solved by employing other algorithmic

approaches, Greedy approach solves Fractional Knapsack problem reasonably in a good time.

Let us discuss the Knapsack problem in detail.

Knapsack Problem

Given a set of items, each with a weight and a value, determine a subset of items to include in a

collection so that the total weight is less than or equal to a given limit and the total value is as

large as possible.

The knapsack problem is in combinatorial optimization problem. It appears as a subproblem in

many, more complex mathematical models of real-world problems. One general approach to

difficult problems is to identify the most restrictive constraint, ignore the others, solve a

knapsack problem, and somehow adjust the solution to satisfy the ignored constraints.

Applications

In many cases of resource allocation along with some constraint, the problem can be derived in a

similar way of Knapsack problem. Following is a set of example.

 Finding the least wasteful way to cut raw materials

 portfolio optimization

 Cutting stock problems

Problem Scenario

A thief is robbing a store and can carry a maximal weight of W into his knapsack. There are n

items available in the store and weight of ith item is wi and its profit is pi. What items should the

thief take?

In this context, the items should be selected in such a way that the thief will carry those items for

which he will gain maximum profit. Hence, the objective of the thief is to maximize the profit.

Based on the nature of the items, Knapsack problems are categorized as

 Fractional Knapsack

 Knapsack

Fractional Knapsack

In this case, items can be broken into smaller pieces, hence the thief can select fractions of items.

According to the problem statement,

 There are n items in the store

 Weight of ith item wi>0

ith item pi>0and

 Capacity of the Knapsack is W

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 79

In this version of Knapsack problem, items can be broken into smaller pieces. So, the thief may

take only a fraction xi of ith item.

0⩽xi⩽1

The ith item contributes the weight xi.wito the total weight in the knapsack and profit xi.pi

to the total profit.

Algorithm: Greedy-Fractional-Knapsack (w[1..n], p[1..n], W)
for i = 1 to n

do x[i] = 0

weight = 0

for i = 1 to n

if weight + w[i] ≤ W then

x[i] = 1

weight = weight + w[i]

else

x[i] = (W - weight) / w[i]

weight = W

break

return x

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 80

Solution

After sorting all the items according to pi/wi

.First all of B is chosen as weight of B is less than the capacity of the knapsack. Next, item A is

chosen, as the available capacity of the knapsack is greater than the weight of A. Now, C is

chosen as the next item. However, the whole item cannot be chosen as the remaining capacity of

the knapsack is less than the weight of C.

Hence, fraction of C (i.e. (60 − 50)/20) is chosen.

Now, the capacity of the Knapsack is equal to the selected items. Hence, no more item can be

selected.

The total weight of the selected items is 10 + 40 + 20 * (10/20) = 60

And the total profit is 100 + 280 + 120 * (10/20) = 380 + 60 = 440

This is the optimal solution. We cannot gain more profit selecting any different combination of

items

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 81

9. Explain in detail about Dynamic Programming

Dynamic Programming is also used in optimization problems. Like divide-and-conquer

method, Dynamic Programming solves problems by combining the solutions of subproblems.

Moreover, Dynamic Programming algorithm solves each sub-problem just once and then saves

its answer in a table, thereby avoiding the work of re-computing the answer every time.

Two main properties of a problem suggest that the given problem can be solved using Dynamic

Programming. These properties are overlapping sub-problems and optimal substructure.

Overlapping Sub-Problems

Similar to Divide-and-Conquer approach, Dynamic Programming also combines solutions to

sub-problems. It is mainly used where the solution of one sub-problem is needed repeatedly. The

computed solutions are stored in a table, so that these don’t have to be re-computed. Hence, this

technique is needed where overlapping sub-problem exists.

For example, Binary Search does not have overlapping sub-problem. Whereas recursive program

of Fibonacci numbers have many overlapping sub-problems.

Optimal Sub-Structure

A given problem has Optimal Substructure Property, if the optimal solution of the given problem

can be obtained using optimal solutions of its sub-problems.

For example, the Shortest Path problem has the following optimal substructure property −

If a node x lies in the shortest path from a source node u to destination node v, then the shortest

path from u to v is the combination of the shortest path from u to x, and the shortest path from x

to v.

The standard All Pair Shortest Path algorithms like Floyd-Warshall and Bellman-Ford are typical

examples of Dynamic Programming.

Steps of Dynamic Programming Approach

Dynamic Programming algorithm is designed using the following four steps −

 Characterize the structure of an optimal solution.

 Recursively define the value of an optimal solution.

 Compute the value of an optimal solution, typically in a bottom-up fashion.

 Construct an optimal solution from the computed information.

Applications of Dynamic Programming Approach

 Matrix Chain Multiplication

 Longest Common Subsequence

 Travelling Salesman Problem

10. Discuss in detail about in Optimal Binary Search Tree

A Binary Search Tree (BST) is a tree where the key values are stored in the internal

nodes. The external nodes are null nodes. The keys are ordered lexicographically, i.e. for each

internal node all the keys in the left sub-tree are less than the keys in the node, and all the keys in

the right sub-tree are greater.

When we know the frequency of searching each one of the keys, it is quite easy to compute the

expected cost of accessing each node in the tree. An optimal binary search tree is a BST, which

has minimal expected cost of locating each node

Search time of an element in a BST is O(n), whereas in a Balanced-BST search time is O(log n).

Again the search time can be improved in Optimal Cost Binary Search Tree, placing the most

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 82

frequently used data in the root and closer to the root element, while placing the least frequently

used data near leaves and in leaves.

Here, the Optimal Binary Search Tree Algorithm is presented. First, we build a BST from a set

of provided n number of distinct keys < k1, k2, k3, ...kn>. Here we assume, the probability of

accessing a key Ki is pi. Some dummy keys (d0, d1, d2, ...dn) are added as some searches may be

performed for the values which are not present in the Key set K. We assume, for each dummy

key di probability of access is qi.

Optimal-Binary-Search-Tree(p, q, n)
e[1…n + 1, 0…n],

w[1…n + 1, 0…n],

root[1…n + 1, 0…n]

for i = 1 to n + 1 do

e[i, i - 1] := qi - 1

w[i, i - 1] := qi - 1

for l = 1 to n do

for i = 1 to n – l + 1 do

 j = i + l – 1 e[i, j] := ∞

w[i, i] := w[i, i -1] + pj + qj

for r = i to j do

t := e[i, r - 1] + e[r + 1, j] + w[i, j]

if t < e[i, j]

e[i, j] := t

root[i, j] := r

return e and root

Analysis

The algorithm requires O (n3) time, since three nested for loops are used. Each of these loops

takes on at most n values.

Example

Considering the following tree, the cost is 2.80, though this is not an optimal result.

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 83

To get an optimal solution, using the algorithm discussed in this chapter, the following tables are

generated.

In the following tables, column index is i and row index is j.

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 84

11.Explain in detail about the Warshall‟s Algorithm for Finding Transitive Closure.

The Floyd Warshall Algorithm is for solving the All Pairs Shortest Path problem. The problem is

to find shortest distances between every pair of vertices in a given edge weighted directed Graph.

Example:

http://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 85

Floyd Warshall Algorithm
We initialize the solution matrix same as the input graph matrix as a first step. Then we update

the solution matrix by considering all vertices as an intermediate vertex. The idea is to one by

one pick all vertices and updates all shortest paths which include the picked vertex as an

intermediate vertex in the shortest path. When we pick vertex number k as an intermediate

vertex, we already have considered vertices {0, 1, 2, .. k-1} as intermediate vertices. For every

pair (i, j) of the source and destination vertices respectively, there are two possible cases.

1)k is not an intermediate vertex in shortest path from i to j. We keep the value of dist[i][j] as it

is.

2)k is an intermediate vertex in shortest path from i to j. We update the value of dist[i][j] as

dist[i][k] + dist[k][j].

The following figure shows the above optimal substructure property in the all-pairs shortest path

problem.

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 86

UNIT-V

1. Discuss in detail about Backtracking with N-Queens Problem

The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two

queens attack each other. Given an integer n, print all distinct solutions to the n-queens puzzle.

Each solution contains distinct board configurations of the n-queens’ placement, where the

solutions are a permutation of [1,2,3..n] in increasing order, here the number in the ith place

denotes that the ith-column queen is placed in the row with that number. For eg below figure

represents a chessboard

[3 1 4 2].

Algorithm

1) Start in the leftmost column

2) If all queens are placed

return true

3) Try all rows in the current column. Do following for every tried row.

 a) If the queen can be placed safely in this row then mark this [row,

column] as part of the solution and recursively check if placing

queen here leads to a solution.

 b) If placing the queen in [row, column] leads to a solution then return

true.

ADVANCED ALGORITHM DESIGN AND

ANALYSIS
– N-Queen's Problem - Branch and Bound – Assignment Problem - P & NP problems – NP-

complete problems – Approximation algorithms for NP-hard problems – Traveling salesman

problem-Amortized Analysis.

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 87

 c) If placing queen doesn't lead to a solution then umark this [row,

column] (Backtrack) and go to step (a) to try other rows.

3) If all rows have been tried and nothing worked, return false to trigger

backtracking.

Input:
The first line of input contains an integer T denoting the no of test cases. Then T test cases

follow. Each test case contains an integer n denoting the size of the chessboard.

Output:
For each test case, output your solutions on one line where each solution is enclosed in square

brackets '[', ']' separated by a space . The solutions are permutations of {1, 2, 3 …, n} in

increasing order where the number in the ith place denotes the ith-column queen is placed in the

row with that number, if no solution exists print -1.

Constraints:
1<=T<=10

1<=n<=10

Example:

Input
2

1

4

Output:
[1]

[2 4 1 3] [3 1 4 2]

2. Describe in detail about P and NP problems

 many problems are solved where the objective is to maximize or minimize some values,

whereas in other problems we try to find whether there is a solution or not. Hence, the problems

can be categorized as follows −

Optimization Problem

Optimization problems are those for which the objective is to maximize or minimize some

values. For example,

 Finding the minimum number of colors needed to color a given graph.

 Finding the shortest path between two vertices in a graph.

Decision Problem

There are many problems for which the answer is a Yes or a No. These types of problems are

known as decision problems. For example,

 Whether a given graph can be colored by only 4-colors.

 Finding Hamiltonian cycle in a graph is not a decision problem, whereas checking a

graph is Hamiltonian or not is a decision problem.

What is Language?

Every decision problem can have only two answers, yes or no. Hence, a decision problem may

belong to a language if it provides an answer ‘yes’ for a specific input. A language is the totality

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 88

of inputs for which the answer is Yes. Most of the algorithms discussed in the previous chapters

are polynomial time algorithms.

For input size n, if worst-case time complexity of an algorithm is O(nk), wherek is a constant,

the algorithm is a polynomial time algorithm.

Algorithms such as Matrix Chain Multiplication, Single Source Shortest Path, All Pair Shortest

Path, Minimum Spanning Tree, etc. run in polynomial time. However there are many problems,

such as traveling salesperson, optimal graph coloring, Hamiltonian cycles, finding the longest

path in a graph, and satisfying a Boolean formula, for which no polynomial time algorithms is

known. These problems belong to an interesting class of problems, called the NP-

Complete problems, whose status is unknown.

In this context, we can categorize the problems as follows −

P-Class

The class P consists of those problems that are solvable in polynomial time, i.e. these problems

can be solved in time O(nk) in worst-case, where k is constant.

These problems are called tractable, while others are called intractable or superpolynomial.

Formally, an algorithm is polynomial time algorithm, if there exists a polynomialp(n) such that

the algorithm can solve any instance of size n in a timeO(p(n)).

Problem requiring Ω(n50) time to solve are essentially intractable for large n. Most known

polynomial time algorithm run in time O(nk) for fairly low value ofk.

The advantages in considering the class of polynomial-time algorithms is that all

reasonable deterministic single processor model of computation can be simulated on each

other with at most a polynomial slow-d

NP-Class

The class NP consists of those problems that are verifiable in polynomial time. NP is the class

of decision problems for which it is easy to check the correctness of a claimed answer, with the

aid of a little extra information. Hence, we aren’t asking for a way to find a solution, but only to

verify that an alleged solution really is correct.

Every problem in this class can be solved in exponential time using exhaustive search.

P versus NP

Every decision problem that is solvable by a deterministic polynomial time algorithm is also

solvable by a polynomial time non-deterministic algorithm.

All problems in P can be solved with polynomial time algorithms, whereas all problems in NP -

P are intractable.

It is not known whether P = NP. However, many problems are known in NP with the property

that if they belong to P, then it can be proved that P = NP.

If P ≠ NP, there are problems in NP that are neither in P nor in NP-Complete.

The problem belongs to class P if it’s easy to find a solution for the problem. The problem

belongs to NP, if it’s easy to check a solution that may have been very tedious to find.

4. Explain in detail about NP hard problems

A problem is in the class NPC if it is in NP and is as hard as any problem in NP. A problem

is NP-hard if all problems in NP are polynomial time reducible to it, even though it may not be

in NP itself.

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 89

If a polynomial time algorithm exists for any of these problems, all problems in NP would be

polynomial time solvable. These problems are called NP-complete. The phenomenon of NP-

completeness is important for both theoretical and practical reasons.

5. Describe in detail about NP complete problems

Definition of NP-Completeness

A language B is NP-complete if it satisfies two conditions

 B is in NP

 Every A in NP is polynomial time reducible to B.

If a language satisfies the second property, but not necessarily the first one, the language B is

known as NP-Hard. Informally, a search problem B is NP-Hard if there exists some NP-

Complete problem A that Turing reduces to B.

The problem in NP-Hard cannot be solved in polynomial time, until P = NP. If a problem is

proved to be NPC, there is no need to waste time on trying to find an efficient algorithm for it.

Instead, we can focus on design approximation algorithm.

NP-Complete Problems

Following are some NP-Complete problems, for which no polynomial time algorithm is known.

 Determining whether a graph has a Hamiltonian cycle

 Determining whether a Boolean formula is satisfiable, etc.

NP-Hard Problems

The following problems are NP-Hard

 The circuit-satisfiability problem

 Set Cover

 Vertex Cover

 Travelling Salesman Problem

In this context, now we will discuss TSP is NP-Complete

TSP is NP-Complete

The traveling salesman problem consists of a salesman and a set of cities. The salesman has to

visit each one of the cities starting from a certain one and returning to the same city. The

challenge of the problem is that the traveling salesman wants to minimize the total length of the

trip

Proof

To prove TSP is NP-Complete, first we have to prove that TSP belongs to NP. In TSP, we find

a tour and check that the tour contains each vertex once. Then the total cost of the edges of the

tour is calculated. Finally, we check if the cost is minimum. This can be completed in

polynomial time. Thus TSP belongs to NP.

Secondly, we have to prove that TSP is NP-hard. To prove this, one way is to show

that Hamiltonian cycle ≤p TSP (as we know that the Hamiltonian cycle problem is

NPcomplete).

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 90

Assume G = (V, E) to be an instance of Hamiltonian cycle.

Hence, an instance of TSP is constructed. We create the complete graph G' = (V, E'), where

E′={(i,j):i,j∈Vandi≠jEijijVandij

Thus, the cost function is defined as follows −

t(i,j)={01if(i,j)∈Eotherwisetij0ifijE1otherwise

Now, suppose that a Hamiltonian cycle h exists in G. It is clear that the cost of each edge

in h is 0 in G' as each edge belongs to E. Therefore, h has a cost of0 in G'. Thus, if graph G has

a Hamiltonian cycle, then graph G' has a tour of 0cost.

Conversely, we assume that G' has a tour h' of cost at most 0. The cost of edges

in E' are 0 and 1 by definition. Hence, each edge must have a cost of 0as the cost of h' is 0. We

therefore conclude that h' contains only edges in E.

We have thus proven that G has a Hamiltonian cycle, if and only if G' has a tour of cost at

most 0. TSP is NP-complete.

6. Discuss in detail about amortized analysis

Amortized Analysis

Amortized analysis is generally used for certain algorithms where a sequence of similar

operations are performed.

 Amortized analysis provides a bound on the actual cost of the entire sequence, instead of

bounding the cost of sequence of operations separately.

 Amortized analysis differs from average-case analysis; probability is not involved in

amortized analysis. Amortized analysis guarantees the average performance of each

operation in the worst case.

It is not just a tool for analysis, it’s a way of thinking about the design, since designing and

analysis are closely related.

Aggregate Method

The aggregate method gives a global view of a problem. In this method, if noperations takes

worst-case time T(n) in total. Then the amortized cost of each operation is T(n)/n. Though

different operations may take different time, in this method varying cost is neglected.

Accounting Method

In this method, different charges are assigned to different operations according to their actual

cost. If the amortized cost of an operation exceeds its actual cost, the difference is assigned to

the object as credit. This credit helps to pay for later operations for which the amortized cost

less than actual cost.

If the actual cost and the amortized cost of ith operation are cici and cl^cl, then

∑i=1ncl^⩾∑i=1ncii1ncli1nci

Potential Method

This method represents the prepaid work as potential energy, instead of considering prepaid

work as credit. This energy can be released to pay for future operations.

If we perform n operations starting with an initial data structure D0. Let us consider, ci as the

actual cost and Di as data structure of ith operation. The potential function Ф maps to a real

number Ф(Di), the associated potential ofDi. The amortized cost cl^cl can be defined by

cl^=ci+Φ(Di)−Φ(Di−1)clciΦDiΦDi1

Hence, the total amortized cost is

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 91

∑i=1ncl^=∑i=1n(ci+Φ(Di)−Φ(Di−1))=∑i=1nci+Φ(Dn)−Φ(D0)i1ncli1nciΦDiΦDi1i1nciΦDnΦD

0

Dynamic Table

If the allocated space for the table is not enough, we must copy the table into larger size table.

Similarly, if large number of members are erased from the table, it is a good idea to reallocate

the table with a smaller size.

Using amortized analysis, we can show that the amortized cost of insertion and deletion is

constant and unused space in a dynamic table never exceeds a constant fraction of the total

space.

 MC5301 / Advanced Data Structures & Algorithms MCA 2018-2019

St. Joseph’s College of Engineering 92

