

CS6703 - Grid and Cloud Computing Department of IT

Unit I - Introduction

Part - A

1. Define cloud computing
Cloud computing is the delivery of computing as a service rather than a product, hereby shared
resources, software, and information are provided to computers and other devices as a utility.
2. What is Distributed computing
This is a field of computer science/engineering that studies distributed systems. A distributed system
consists of multiple autonomous computers, each having its own private memory, communicating

through a computer network. Information exchange in a distributed system is accomplished through
message passing. A computer program that runs in a distributed system is known as a distributed

program. The process of writing distributed programs is referred to as distributed programming.
3. Difference between distributed and parallel computing.

Distributed Parallel

Each processor has its own All processors may have
private memory (distributed access to a shared memory

memory). Information is to exchange information

exchanged by passing between processors.

messages between the

processors.

It is loosely coupled. It is tightly coupled.

An important goal and Large problems can often

challenge of distributed be divided into smaller

systems is location ones, which are then solved

transparency. concurrently ("in parallel").

4. What is mean by service oriented architecture?
In grids/web services, Java, and CORBA, an entity is, respectively, a service, a Java object, and a
CORBA distributed object in a variety of languages. These architectures build on the traditional seven

Open Systems Interconnection (OSI) layers that provide the base networking abstractions. On top of this
we have a base software environment, which would be .NET or Apache Axis for web services, the Java

Virtual Machine for Java, and a broker network for CORBA.
5. What is High Performance Computing(HPC).
supercomputer sites and large data centers must provide high-performance computing services to huge
numbers of Internet users concurrently.Because of this high demand, the Linpack Benchmark for high-

performance computing (HPC) applications is no longer optimal for measuring system performance.
The emergence of computing clouds instead demands high-throughput computing (HTC) systems built

with parallel and distributed computing technologies. We have to upgrade data centers using fast
servers, storage systems, and high-bandwidth networks. The purpose is to advance network-based

computing and web services with the emerging new technologies.
6. Define peer-to-peer network.
The P2P architecture offers a distributed model of networked systems. Every node acts as both a client
and a server, providing part of the system resources. Peer machines are simply client computers

connected to the Internet. All client machines act autonomously to join or leave the system freely. This
implies that no master-slave relationship exists among the peers. No central coordination or central

database is needed.
7. What are the Three New Computing

Paradigms Radio-frequency identification
(RFID), Global Positioning System (GPS),
Internet of Things (IoT).

8. What is degree of parallelism and types
The degree of parallelism (DOP) is a metric which indicates how many operations can be or are being
simultaneously executed by a computer. It is especially useful for describing the performance of parallel
programs and multi-processor systems.

 Bit-level parallelism (BLP) Data-level parallelism (DLP)

 Instruction-level parallelism (ILP) Multicore processors and chip

 VLIW (very long instruction word) multiprocessors (CMPs)

 Job-level parallelism (JLP)

http://en.wikipedia.org/wiki/Product_%28business%29
http://en.wikipedia.org/wiki/Utility_computing
https://en.wikipedia.org/wiki/Instruction_(computer_science)
https://en.wikipedia.org/wiki/Parallel_programming_model
https://en.wikipedia.org/wiki/Parallel_programming_model
https://en.wikipedia.org/wiki/Parallel_computing

9. What is Cyber-Physical Systems
A cyber-physical system (CPS) is the result of interaction between computational processes and the
physical world. A CPS integrates ―cyber‖ (heterogeneous, asynchronous) with ―physical‖ (concurrent
and information-dense) objects.

10. Define multi core CPU.
Advanced CPUs or microprocessor chips assume a multi-core architecture with dual, quad, six, or more
processing cores. These processors exploit parallelism at ILP and TLP levels. CPU has reached its limit
in terms of exploiting massive DLP due to the aforementioned memory wall problem
11. Define GPU.
A GPU is a graphics coprocessor or accelerator on a computer’s graphics card or video card. A GPU
offloads the CPU from tedious graphics tasks in video editing applications. The GPU chips can process
a minimum of 10 million polygons per second. GPU’s have a throughput architecture that exploits

massive parallelism by executing many concurrent threads.
12. Clusters of Cooperative Computers
A computing cluster consists of interconnected stand-alone computers which work cooperatively as a
single integrated computing resource.

13. What is single-system image (SSI)
An ideal cluster should merge multiple system images into a single-system image (SSI). Cluster
designers desire a cluster operating system or some middleware to support SSI at various levels,
including the sharing of CPUs, memory, and I/O across all cluster nodes.
14. What is Grid Computing
Grid computing is the collection of computer resources from multiple locations to reach a common goal.
The grid can be thought of as a distributed system with non-interactive workloads that involve a large

number of files. Grid computing is distinguished from conventional high performance computing
systems such as cluster computing in that grid computers have each node set to perform a different

task/application.
15. What is Computational Grids

A computing grid offers an infrastructure that couples computers,software/middleware, special
instruments, and people and sensors together. The grid is often constructed across LAN, WAN, or

Internet backbone networks at a regional, national, or global scale. Enterprises or organizations present
grids as integrated computing resources.
16. What is Overlay Networks and its types
Overlay is a virtual network formed by mapping each physical machine with its ID, logically, through a
virtual mapping . When a new peer joins the system, its peer ID is added as a node in the overlay
network.
Two types of overlay networks:
1.Unstructured 2. Structured.

17. Write the any three Grid Applications.

• Schedulers

• Resource Broker

• Load Balancing
18. Difference between grid and cloud computing

 Grid computing cloud computing

 Grids enable access to shared computing Clouds enable access to leasedcomputing

 power and storage capacity from your power and storage capacity from your

 desktop desktop

 In computing centres distributed across The cloud providers private data centres

 different sites, countries and continents which are often centralised in a few

 locations with excellent network

 connections and cheap electrical power.

 Grids were designed to handle large sets Clouds best support long term services

 of limited duration jobs that produce or and longer running jobs (E.g.

 use large quantities of data (e.g. the LHC) facebook.com)

19. What are the derivatives of grid computing?

There are 8 derivatives of grid computing. They are as follows:

 a)Compute grid

 b) Data grid

 c) Science grid

https://en.wikipedia.org/wiki/Distributed_system
https://en.wikipedia.org/wiki/Cluster_(computing)

d) Access grid
e) Knowledge grid

f) Cluster grid

g) Terra grid

h) Commodity grid.
20. What is grid infrastructure?
Grid infrastructure forms the core foundation for successful grid applications. This infrastructure is a
complex combination of number of capabilities and resources identified for the specific problem and
environment being addressed.
21. What are the Applications of High-Performance and High-Throughput Systems

1.Science and engineering- Scientific simulations, genomic analysis, etc.Earthquake prediction,
global warming, weather forecasting, etc.

2. Business, education, services industry, and health care- Telecommunication, content
delivery, e-commerce, etc.Banking, stock exchanges, transaction processing, etc.Air traffic control,
electric power grids, distance education, etc.Health care, hospital automation, telemedicine, etc

3. Internet and web services,and government applications- Internet search, data centers,
decision-making systems, etc.Traffic monitoring, worm containment, cyber security, etc.Digital
government, online tax return processing, social networking, etc.
22. What is Utility computing?
It is a service provisioning model in which a service provider makes computing resources and
infrastructure management available to the customer as needed, and charges them for specific usage
rather than a flat rate
23. What is SLA?
A service-level agreement (SLA) is a part of a standardized service contract where a service is formally
defined. Particular aspects of the service – scope, quality, responsibilities – are agreed between the
service provider and the service user. A common feature of an SLA is a contracted delivery time (of the
service or performance)

Part - B

1. Describe about Evolution of Distributed computing.

Distributed computing is a field of computer science that studies distributed systems.
A distributed system is a model in which components located on networked computers

communicate and coordinate their actions by passing messages The components interact with

each other in order to achieve a common goal. Three significant characteristics of distributed

systems are: concurrency of components, lack of a global clock, and independent failure of

components. Examples of distributed systems vary from SOA-based systems to massively

multiplayer online games to peer-to-peer applications.
A computer program that runs in a distributed system is called a distributed program, and
distributed programming is the process of writing such programs. There are many alternatives

for the message passing mechanism, including pure HTTP, RPC-like connectors and message
queues.

HISTORY
The use of concurrent processes that communicate by message-passing has its roots in operating
system architectures studied in the 1960s. The first widespread distributed systems were local-
area networks such as Ethernet, which was invented in the 1970s.
ARPANET, the predecessor of the Internet, was introduced in the late 1960s, and ARPANET e-

mail was invented in the early 1970s. E-mail became the most successful application of

ARPANET, and it is probably the earliest example of a large-scale distributed application. In

addition to ARPANET, and its successor, the Internet, other early worldwide computer networks

included Usenet and FidoNet from the 1980s, both of which were used to support distributed

discussion systems.
The study of distributed computing became its own branch of computer science in the late 1970s
and early 1980s. The first conference in the field, Symposium on Principles of Distributed

Computing (PODC), dates back to 1982, and its European counterpart International Symposium
on Distributed Computing (DISC) was first held in 1985.

https://en.wikipedia.org/wiki/Standardized_service_contract
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Message_passing
https://en.wikipedia.org/wiki/Clock_synchronization
https://en.wikipedia.org/wiki/Service-oriented_architecture
https://en.wikipedia.org/wiki/Massively_multiplayer_online_game
https://en.wikipedia.org/wiki/Massively_multiplayer_online_game
https://en.wikipedia.org/wiki/Peer-to-peer
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Remote_procedure_call
https://en.wikipedia.org/wiki/Message-oriented_middleware
https://en.wikipedia.org/wiki/Message-oriented_middleware
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Local-area_networks
https://en.wikipedia.org/wiki/Local-area_networks
https://en.wikipedia.org/wiki/Local-area_networks
https://en.wikipedia.org/wiki/Ethernet
https://en.wikipedia.org/wiki/ARPANET
https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/E-mail
https://en.wikipedia.org/wiki/E-mail
https://en.wikipedia.org/wiki/E-mail
https://en.wikipedia.org/wiki/Distributed_application
https://en.wikipedia.org/wiki/Usenet
https://en.wikipedia.org/wiki/FidoNet
https://en.wikipedia.org/wiki/Symposium_on_Principles_of_Distributed_Computing
https://en.wikipedia.org/wiki/Symposium_on_Principles_of_Distributed_Computing
https://en.wikipedia.org/wiki/International_Symposium_on_Distributed_Computing
https://en.wikipedia.org/wiki/International_Symposium_on_Distributed_Computing

2. Explain in detail about Scalable computing over the Internet
A parallel and distributed computing system uses multiple computers to solve large-scale

problems over the Internet. Thus, distributed computing becomes data-intensive and network-
centric. identifies the applications of modern computer systems that practice parallel and

distributed computing. These large-scale Internet applications have significantly enhanced the
quality of life and information services in society today.
The Age of Internet Computing
Billions of people use the Internet every day. As a result, supercomputer sites and large data

centers must provide high-performance computing services to huge numbers of Internet users

concurrently.Because of this high demand, the Linpack Benchmark for high-performance

computing (HPC) applications is no longer optimal for measuring system performance. The

emergence of computing clouds instead demands high-throughput computing (HTC) systems

built with parallel and distributed computing technologies We have to upgrade data centers using

fast servers, storage systems, and high-bandwidth networks. The purpose is to advance network-

based computing and web services with the emerging new technologies.
The Platform Evolution

Computer technology has gone through five generations of development, with each

generation lasting from 10 to 20 years. Successive generations are overlapped in about 10 years.

For instance, from 1950 to 1970, a handful of mainframes, including the IBM 360 and CDC

6400, were built to satisfy the demands of large businesses and government organizations. From

1960 to 1980, lower-cost minicomputers such as the DEC PDP 11 and VAX Series became

popular among small businesses and on college campuses.

o From 1970 to 1990, we saw widespread use of personal computers built with VLSI
microprocessors.

o From 1980 to 2000, massive numbers of portable computers and pervasive devices appeared
inboth wired and wireless applications.

High-Performance Computing
The speed of HPC systems has increased from Gflops in the early 1990s to now Pflops in

2010. This improvement was driven mainly by the demands from scientific, engineering, and
manufacturing communities
High-Throughput Computing

The development of market-oriented high-end computing systems is undergoing a
strategic change
from an HPC paradigm to an HTC paradigm. This HTC paradigm pays more attention to high-
flux computing. The main application for high-flux computing is in Internet searches and web

services by millions or more users simultaneously. The performance goal thus shifts to measure
high throughput or the number of tasks completed per unit of time.
Three New Computing Paradigms

radio-frequency identification (RFID), Global Positioning System (GPS), and sensor
technologies has triggered the development of the Internet of Things (IoT).
Computing Paradigm Distinctions

In general distributed computing is the opposite of centralized computing. The field of
parallel computing overlaps with distributed computing to a great extent, and cloud computing
overlaps with distributed, centralized, and parallel computing.

Centralized computing this is a computing paradigm by which all computer resources are

centralized in one physical system. All resources (processors, memory, and storage) are fully
shared and tightly coupled within one integrated OS. Many data centers and supercomputers are

centralized systems, but they are used in parallel, distributed, and cloud computing applications
• Parallel computing in parallel computing, all processors are either tightly coupled with

centralized shared memory or loosely coupled with distributed memory. Some authors refer to

this discipline as parallel processing. Interprocessor communication is accomplished through

shared memory or via message passing. A computer system capable of parallel computing is

commonly known as a parallel computer . Programs running in a parallel computer are called

parallel programs. The process of writing parallel programs is often
referred to as parallel programming .
• Distributed computing This is a field of computer science/engineering that studies distributed

systems. A distributed system consists of multiple autonomous computers, each having its own

private memory, communicating through a computer network. Information exchange in a

distributed system is accomplished through message passing. A computer program that runs in a

distributed system is known as a distributed program. The process of writing distributed

programs is referred to as distributed programming.
• Cloud computing An Internet cloud of resources can be either a centralized or a distributed
computing system. The cloud applies parallel or distributed computing, or both. Clouds can be

built with physical or virtualized resources over large data centers that are centralized or

distributed. Some authors consider cloud computing to be a form of utility computing or service
computing .

The high-tech community prefer the term concurrent computing or concurrent

programming. parallel computing and distributing computing, although biased practitioners may

interpret them differently.Ubiquitous computing refers to computing with pervasive devices at

any place and time using wired or wireless communication. The Internet of Things (IoT) is a

networked connection of everyday objects including computers, sensors, humans, etc. The IoT is

supported by Internet clouds to achieve ubiquitous computing with any object at any place and

time. Finally, the term Internet computing is even broader and covers all computing paradigms

over the Internet.
Distributed System Families

Since the mid-1990s, technologies for building P2P networks and networks of clusters

have been consolidated into many national projects designed to establish wide area computing
infrastructures, known as computational grids or data grids.
Meeting these goals requires yielding the following design objectives:

Efficiency measures the utilization rate of resources in an execution model by exploiting

massive parallelism in HPC. For HTC, efficiency is more closely related to job throughput, data
access, storage, and power efficiency.
• Dependability measures the reliability and self-management from the chip to the system and

application levels. The purpose is to provide high-throughput service with Quality of Service
(QoS) assurance, even under failure conditions.
• Adaptation in the programming model measures the ability to support billions of job

requests over massive data sets and virtualized cloud resources under various workload and
service models.

• Flexibility in application deployment measures the ability of distributed systems to run well in

both HPC (science and engineering) and HTC (business) applications
Scalable Computing Trends and New Paradigms

Several predictable trends in technology are known to drive computing applications. In
fact, designers and programmers want to predict the technological capabilities of future systems.
For instance, Jim Gray’s paper, ―Rules of Thumb in Data Engineering,‖ is an excellent example

of how technology affects applications and vice versa. In addition, Moore’s law indicates that
processor speed doubles every 18 months. Although Moore’s law has been proven valid over the

last 30 years, it is difficult to say whether it will continue to be true in the future.
Degrees of Parallelism

when hardware was bulky and expensive, most computers were designed in a bit-serial

fashion. In this scenario, bit-level parallelism (BLP) converts bit-serial processing to word-level

processing gradually. users graduated from 4-bit microprocessors to 8-, 16-, 32-, and 64-bit

CPUs. This led us to the next wave of improvement, known as instruction-levelparallelism (ILP),

in which the processor executes multiple instructions simultaneously rather thanonly one

instruction at a time. practiced ILP through pipelining, superscalar computing, VLIW (very long

instruction word) architectures, and multithreading. ILP requires branch prediction, dynamic

scheduling, speculation, and compiler support to work efficiently. Data-level parallelism (DLP)

was made popular through SIMD (single instruction, multiple data) and vector machines using

vector or array types of instructions. DLP requires even more hardware support and compiler

assistance to work properly. Ever since the introduction of multicore processors and chip

multiprocessors (CMPs), exploring task-level parallelism (TLP).A modern processor explores all

of the aforementioned parallelism types. In fact, BLP, ILP, and As we move from parallel

processing to distributed processing, increase in computing granularity to job-level parallelism

(JLP). It is fair to say that coarse-grain parallelism is built on top of fine-grain parallelism.
Innovative Applications

The Trend toward Utility Computing
All ubiquitous in daily life. Reliability and scalability are two major design objectives in

these computing models.Second, they are aimed at autonomic operations that can be self-

organized to support dynamic discovery.Finally, these paradigms are composable with QoS and
SLAs (service-level agreements).
These paradigms and their attributes realize the computer utility vision.

The Hype Cycle of New Technologies

For example, at that time consumer-generated media was at the disillusionment stage, and

it was predicted to take less than two years to reach its plateau of adoption. Internet

micropayment systems were forecast to take two to five years to move from the enlightenment

stage to maturity. It was believed that 3D printing would take five to 10 years to move from the

rising expectation stage to mainstream adoption, and mesh network sensors were expected to

take more than 10 years to move from the inflated expectation stage to a plateau of mainstream

adoption.
The Internet of Things and Cyber-Physical Systems

The Internet of Things
The traditional Internet connects machines to machines or web pages to web pages. The

concept of the IoT was introduced in 1999 at MIT. The IoT refers to the networked
interconnection of everyday objects, tools, devices, or computers. One can view the IoT as a

wireless network of sensors that interconnect all things in our daily life.

Cyber-Physical Systems
A cyber-physical system (CPS) is the result of interaction between computational processes and

the physical world. A CPS integrates ―cyber‖ (heterogeneous, asynchronous) with ―physical‖

(concurrent and information-dense) objects. A CPS merges the ―3C‖ technologies of

computation, communication, and control into an intelligent closed feedback system between the

physical world and the information world, a concept which is actively explored in the United

States. The IoT emphasizes various networking connections among physical objects, while the

CPS emphasizes exploration of virtual reality (VR) applications in the physical world.
3. Explain in detail about Multicore CPUs and Multithreading Technologies
The growth of component and network technologies over the past 30 years. They are crucial to
the development of HPC and HTC systems. processor speed is measured in millions of

instructions per second (MIPS) and network bandwidth is measured in megabits per second
(Mbps) or gigabits per second (Gbps). The unit GE refers to 1 Gbps Ethernet bandwidth
Advances in CPU Processors

Advanced CPUs or microprocessor chips assume a multicore architecture with dual,

quad, six, or more processing cores. These processors exploit parallelism at ILP and TLP levels.

Processor speed growth is plotted in the upper curve in the diagram across generations of

microprocessors or CMPs. We see growth from 1 MIPS for the VAX 780 in 1978 to 1,800 MIPS

for the Intel Pentium 4 in 2002, up to a 22,000 MIPS peak for the Sun Niagara 2 in 2008. As the

figure shows, Moore’s law has proven to be pretty accurate in this case. The clock rate for these

processors increased from 10 MHz for the Intel 286 to 4 GHz for the Pentium 4 in 30 years.
The clock rate reached its limit on CMOS-based chips due to power limitations. At the time of

this writing, very few CPU chips run with a clock rate exceeding 5 GHz. In other words, clock

rate will not continue to improve unless chip technology matures. This limitation is attributed

primarily to excessive heat generation with high frequency or high voltages. The ILP is highly

exploited in modern CPU processors. ILP mechanisms include multiple-issue superscalar

architecture, dynamic branch prediction, and speculative execution, among others. These ILP

techniques demand hardware and compiler support. In addition, DLP and TLP are highly
explored in graphics processing units (GPUs) that adopt a many-core architecture with hundreds
to thousands of simple cores

Both multi-core CPU and many-core GPU processors can handle multiple instruction threads at

different magnitudes today. the architecture of a typical multicore processor. Each core is

essentially a processor with its own private cache (L1 cache). Multiple cores are housed in the

same chip with an L2 cache that is shared by all cores. In the future, multiple CMPs could be

built on the same CPU chip with even the L3 cache on the chip. Multicore and multithreaded

CPUs are equipped with many high-end processors, including the Intel i7, Xeon, AMD Opteron,

Sun Niagara, IBM Power 6, and X cell processors. Each core could be also multithreaded. For

example, the Niagara II is built with eight cores with eight threads handled by each core. This

implies that the maximum ILP and TLP that can be exploited in Niagara is 64 (8 × 8 = 64). In

2011, the Intel Core i7 990x has reported 159,000 MIPS execution rate as shown in the

uppermost square
Multicore CPU and Many-Core GPU Architectures

Multicore CPUs may increase from the tens of cores to hundreds or more in the future.

But the CPU has reached its limit in terms of exploiting massive DLP due to the aforementioned

memory wall problem. This has triggered the development of many-core GPUs with hundreds or

more thin cores. Both IA-32 and IA-64 instruction set architectures are built into commercial

CPUs. Now, x-86 processors have been extended to serve HPC and HTC systems in some high-

end server processors.
Many RISC processors have been replaced with multicore x-86 processors and many-core GPUs

in the Top 500 systems. This trend indicates that x-86 upgrades will dominate in data centers and

supercomputers. The GPU also has been applied in large clusters to build supercomputers in

MPPs. In the future, the processor industry is also keen to develop asymmetric or heterogeneous

chip multiprocessors that can house both fat CPU cores and thin GPU cores on the same chip
Multithreading Technology

The dispatch of five independent threads of instructions to four pipelined datapaths
(functional units) in each of the following five processor categories from left to right: a

Four-issue superscalar processor, a fine-grain multithreaded processor, a coarse-grain

multithreaded processor, a two-core CMP, and a simultaneous multithreaded (SMT) processor.
The superscalar processor is single-threaded with four functional units. Each of the three

multithreaded processors is four-way multithreaded over four functional data paths. In the dual-
core processor, assume two processing cores, each a single-threaded two-way superscalar

processor.
Instructions from different threads are distinguished by specific shading patterns for instructions

from five independent threads. Typical instruction scheduling patterns are shown here. Only

instructions from the same thread are executed in a superscalar processor. Fine-grain

multithreading switches the execution of instructions from different threads per cycle. Course-

grain multithreading executes many instructions from the same thread for quite a few cycles

before switching to another thread. The multicore CMP executes instructions from different

threads completely. The SMT allows simultaneous scheduling of instructions from different

threads in the same cycle
These execution patterns closely mimic an ordinary program. The blank squares correspond to

no available instructions for an instruction data path at a particular processor cycle. More blank
cells imply lower scheduling efficiency. The maximum ILP or maximum TLP is difficult to

achieve at each processor cycle. The point here is to demonstrate your understanding of typical

instruction scheduling patterns in these five different micro-architectures in modern processors.
4. Explain in detail about GPU Computing to Exascale and Beyond
A GPU is a graphics coprocessor or accelerator mounted on a computer’s graphics card or video

card. A GPU offloads the CPU from tedious graphics tasks in video editing applications. The

world’s first GPU, the GeForce 256, was marketed by NVIDIA in 1999. These GPU chips can

process a minimum of 10 million polygons per second, and are used in nearly every computer on

the market today. Some GPU features were also integrated into certain CPUs. Traditional CPUs

are structured with only a few cores. For example, the Xeon X5670 CPU has six cores. However,

a modern GPU chip can be built with hundreds of processing cores.
GPUs have a throughput architecture that exploits massive parallelism by executing many

concurrent threads slowly, instead of executing a single long thread in a conventional

microprocessor very quickly. Lately, parallel GPUs or GPU clusters have been garnering a lot of

attention against the use of CPUs with limited parallelism. General-purpose computing on GPUs,

known as GPGPUs, have appeared in the HPC field. NVIDIA’s CUDA model was for HPC

using GPGPUs.
How GPUs Work

Early GPUs functioned as coprocessors attached to the CPU. Today, the NVIDIA GPU
has been upgraded to 128 cores on a single chip. Furthermore, each core on a GPU can handle

eight threads of instructions. This translates to having up to 1,024 threads executed concurrently
on a single GPU. This is true massive parallelism, compared to only a few threads that can be

handled by a conventional CPU. The CPU is optimized for latency caches, while the GPU is

optimized to deliver much higher throughput with explicit management of on-chip memory

Modern GPUs are not restricted to accelerated graphics or video coding. They are used in HPC

systems to power supercomputers with massive parallelism at multicore and multithreading

levels. GPUs are designed to handle large numbers of floating-point operations in parallel. In a

way, the GPU offloads the CPU from all data-intensive calculations, not just those that are

related to video processing. Conventional GPUs are widely used in mobile phones, game

consoles, embedded systems, PCs, and servers. The NVIDIA CUDA Tesla or Fermi is used in

GPU clusters or in HPC systems for parallel processing of massive floating-pointing data.
GPU Programming Model
The interaction between a CPU and GPU in performing parallel execution of floating-point

operations concurrently. The CPU is the conventional multicore processor with limited

parallelism to exploit. The GPU has a many-core architecture that has hundreds of simple

processing cores organized as multiprocessors. Each core can have one or more threads.

Essentially, the CPU’s floating-point kernel computation role is largely offloaded to the many-

core GPU. The CPU instructs the GPU to perform massive data processing. The bandwidth must

be matched between the on-board main memory and the on-chip GPU memory.

In November 2010, three of the five fastest supercomputers in the world (the Tianhe-1a,

Nebulae, and Tsubame) used large numbers of GPU chips to accelerate floating-point

computations. the architecture of the Fermi GPU, a next-generation GPU from NVIDIA. This is

a streaming multiprocessor (SM) module. Multiple SMs can be built on a single GPU chip. The

Fermi chip has 16 SMs implemented with 3 billion transistors. Each SM comprises up to 512

streaming processors (SPs), known as CUDA cores. The Tesla GPUs used in the Tianhe-1a have

a similar architecture, with 448 CUDA cores.
All functional units and CUDA cores are interconnected by an NoC (network on chip) to a large

number of SRAM banks (L2 caches). Each SM has a 64 KB L1 cache. The 768 KB unified L2

cache is shared by all SMs and serves all load, store, and texture operations. Memory controllers

are used to connect to 6 GB of off-chip DRAMs. The SM schedules threads in groups of 32

parallel threads called warps. In total, 256/512 FMA (fused multiply and add) operations can be

done in parallel to produce 32/64-bit floating-point results. The 512 CUDA cores in an SM can

work in parallel to deliver up to 515 Gflops of double-precision results, if fully utilized. With 16

SMs, a single GPU has a peak speed of 82.4 Tflops. Only 12 Fermi GPUs have the potential to

reach the Pflops performance thousand-core GPUs may appear in Exascale (Eflops or 1018

flops) systems. This reflects a trend toward building future MPPs with hybrid architectures of

both types of processing chips. In a DARPA report published in September 2008, four challenges
are identified for exascale computing: (1) energy and power, (2) memory and storage, (3)

concurrency and locality, and (4) system resiliency

Power Efficiency of the GPU
Bill Dally of Stanford University considers power and massive parallelism as the major benefits

of GPUs over CPUs for the future. By extrapolating current technology and computer

architecture, it was estimated that 60 Gflops/watt per core is needed to run an exaflops system

Power constrains what we can put in a CPU or GPU chip. Dally has estimated that the CPU chip

consumes about 2 nJ/instruction, while the GPU chip requires 200 pJ/instruction, which is 1/10

less than that of the CPU. The CPU is optimized for latency in caches and memory, while the

GPU is optimized for throughput with explicit management of on-chip memory.

This may limit the scaling of future supercomputers. However, the GPUs may close the gap with

the CPUs. Data movement dominates power consumption. One needs to optimize the storage

hierarchy and tailor the memory to the applications. We need to promote self-aware OS and

runtime support and build locality-aware compilers and auto-tuners for GPU based MPPs. This

implies that both power and software are the real challenges in future parallel and distributed

computing system
5. i)Describe about Virtual Machines and Virtualization Middleware
A conventional computer has a single OS image. This offers a rigid architecture that tightly
couples application software to a specific hardware platform. Some software running well on one

machine may not be executable on another platform with a different instruction set under a fixed
OS. Virtual machines (VMs) offer novel solutions to underutilized resources, application

inflexibility, software manageability, and security concerns in existing physical machines.

To build large clusters, grids, and clouds, we need to access large amounts of computing,
storage, and networking resources in a virtualized manner.
In particular, a cloud of provisioned resources must rely on virtualization of processors, memory,
and I/O facilities dynamically
Virtual Machines
The host machine is equipped with the physical hardware, as shown at the bottom of the figure.
An example is an x-86 architecture desktop running its installed Windows OS, as shownin part
(a) of the figure. The VM can be provisioned for any hardware system. The VM is builtwith
virtual resources managed by a guest OS to run a specific application. Between the VMs and the
host platform, one needs to deploy a middleware layer called a virtual machine monitor (VMM).

Shows a native VM installed with the use of a VMM called a hypervisor in privileged mode. For
example, the hardware has x-86 architecture running the Windows system. The guest OS could

be a Linux system and the hypervisor is the XEN system developed at Cambridge University.
This hypervisor approach is also called bare-metal VM, because the hypervisor handles the bare

hardware (CPU, memory, and I/O) directly. Another architecture is the host VM
The VM approach offers hardware independence of the OS and applications. The user

application running on its dedicated OS could be bundled together as a virtual appliance that can

be ported to any hardware platform. The VM could run on an OS different from that of the host
computer.
VM Primitive Operations
The VMM provides the VM abstraction to the guest OS. With full virtualization, the VMM

exports a VM abstraction identical to the physical machine so that a standard OS such as
Windows 2000 or Linux can run just as it would on the physical hardware

These VM operations enable a VM to be provisioned to any available hardware platform. They
also enable flexibility in porting distributed application executions. Furthermore, the VM
approach will significantly enhance the utilization of server resources
Virtual Infrastructures
Physical resources for compute, storage, and networking at the bottom of are mapped to the
needy applications embedded in various VMs at the top. Hardware and software are then
separated. Virtual infrastructure is what connects resources to distributed applications. It is a

dynamic mapping of system resources to specific applications. The result is decreased costs and
increased efficiency and responsiveness.

5. ii) Explain in detail about Data Center Virtualization for Cloud Computing .
Basic architecture and design considerations of data centers. Cloud architecture is built

with commodity hardware and network devices. Almost all cloud platforms choose the popular

x86 processors. Low-cost terabyte disks and Gigabit Ethernet are used to build data centers. Data

center design emphasizes the performance/price ratio over speed performance alone. In other

words, storage and energy efficiency are more important than shear speed performance.
Data Center Growth and Cost Breakdown

A large data center may be built with thousands of servers. Smaller data centers are

typically built with hundreds of servers. The cost to build and maintain data center servers has

increased over the years. Typically only 30 percent of data center costs goes toward purchasing

IT equipment (such as servers and disks), 33 percent is attributed to the chiller, 18 percent to the

uninterruptible power supply (UPS), 9 percent to computer room air conditioning (CRAC), and

the remaining 7 percent to power distribution, lighting, and transformer costs. Thus, about 60

percent of the cost to run a data center is allocated to management and maintenance The server

purchase cost did not increase much with time. The cost of electricity and cooling did increase

from 5 percent to 14 percent in 15 years.
Low-Cost Design Philosophy
High-end switches or routers may be too cost-prohibitive for building data centers. Thus, using
high-bandwidth networks may not fit the economics of cloud computing. using commodity x86

servers is more desired over expensive mainframes. The software layer handles network traffic
balancing, fault tolerance, and expandability. Currently, nearly all cloud computing data centers

use Ethernet as their fundamental network technology
Convergence of Technologies
cloud computing is enabled by the convergence of technologies in four areas: (1) hardware

virtualization and multi-core chips, (2) utility and grid computing, (3) SOA, Web 2.0, and WS

mashups, and (4) atonomic computing and data center automation. Hardware virtualization and

multicore chips enable the existence of dynamic configurations in the cloud. Utility and grid

computing technologies lay the necessary foundation for computing clouds Recent advances in

SOA, Web 2.0, and mashups of platforms are pushing the cloud another step forward. Finally,

achievements in autonomic computing and automated data center operations contribute to the

rise of cloud computing.
Jim Gray once posted the following question: ―Science faces a data deluge. How to

manage and analyze information?‖ This implies that science and our society face the same

challenge of data deluge. Data comes from sensors, lab experiments, simulations, individual

archives, and the web in all scales and formats. Preservation, movement, and access of massive

data sets require generic tools supporting high-performance, scalable file systems, databases,

algorithms, workflows, and visualization
On January 11, 2007, the Computer Science and Telecommunication Board (CSTB)

recommended fostering tools for data capture, data creation, and data analysis. A cycle of
interaction exists among four technical areas. First, cloud technology is driven by a surge of

interest in data deluge. Also, cloud computing impacts e-science greatly, which explores
multicore and parallel computing technologies.

By linking computer science and technologies with scientists, a spectrum of e-science or
e-research applications in biology, chemistry, physics, the social sciences, and the humanities has
generated new insights from interdisciplinary activities

Iterative MapReduce extends MapReduce to support a broader range of data mining

algorithms commonly used in scientific applications. The cloud runs on an extremely large
cluster of commodity computers. Internal to each cluster node, multithreading is practiced with a

large number of cores in many-core GPU clusters
6. Explain in detail about clusters of cooperative computers
A computing cluster consists of interconnected stand-alone computers which work cooperatively
as a single integrated computing resource. In the past, clustered computer systems have

demonstrated impressive results in handling heavy workloads with large data sets
Cluster Architecture
Architecture of a typical server cluster built around a low-latency, highbandwidth

interconnection network. This network can be as simple as a SAN (e.g., Myrinet) or a LAN (e.g.,

Ethernet). To build a larger cluster with more nodes, the interconnection network can be built

with multiple levels of Gigabit Ethernet, Myrinet, or InfiniBand switches. Through hierarchical

construction using a SAN, LAN, or WAN, one can build scalable clusters with an increasing

number of nodes. The cluster is connected to the Internet via a virtual private network (VPN)

gateway. The gateway IP address locates the cluster. The system image of a computer is decided

by the way the OS manages the shared cluster resources. Most clusters have loosely coupled

node computers. All resources of a server node are managed by their own OS. Thus, most

clusters have multiple system images as a result of having many autonomous nodes under

different OS control.

Single-System Image
An ideal cluster should merge multiple system images into a single-system image (SSI). Cluster
designers desire a cluster operating system or some middleware to support SSI at various levels,
including the sharing of CPUs, memory, and I/O across all cluster nodes.
An SSI is an illusion created by software or hardware that presents a collection of resources as
one integrated, powerful resource. SSI makes the cluster appear like a single machine to the user.
A cluster with multiple system images is nothing but a collection of independent computers.
Hardware, Software, and Middleware Support
Cluster design principles for both small and large clusters. Clusters exploring massive
parallelism are commonly known as MPPs. Almost all HPC clusters in the Top 500 list are also
MPPs. The building blocks are computer nodes (PCs, workstations, servers, or SMP), special

communication software such as PVM or MPI, and a network interface card in each computer
node. Most clusters run under the Linux OS.

Special cluster middleware supports are needed to create SSI or high availability (HA).

Both sequential and parallel applications can run on the cluster, and special parallel

environments are needed to facilitate use of the cluster resources. For example, distributed

memory has multiple images. Users may want all distributed memory to be shared by all servers

by forming distributed

shared memory (DSM).
Major Cluster Design Issues
A cluster-wide OS for complete resource sharing is not available yet. Middleware or OS

extensions were developed at the user space to achieve SSI at selected functional levels. Without
this middleware, cluster nodes cannot work together effectively to achieve cooperative

computing.

7. Explain in detail about Grid computing Infrastructures
Users have experienced a natural growth path from Internet to web and grid computing services.
Internet services such as the Telnet command enables a local computer to connect to a remote
computer.
Web service such as HTTP enables remote access of remote web pages. Grid computing is
envisioned to allow close interaction among applications running on distant computers
simultaneously.
Computational Grids
Like an electric utility power grid, a computing grid offers an infrastructure that couples
computers, software/middleware, special instruments, and people and sensors together. The grid
is often constructed
across LAN, WAN, or Internet backbone networks at a regional, national, or global scale

Enterprises or organizations present grids as integrated computing resources. They can also be

viewed as virtual platforms to support virtual organizations. The computers used in a grid are

primarily workstations, servers, clusters, and supercomputers. Personal computers, laptops, and

PDAs can be used as access devices to a grid system
Special instruments may be involved such as using the radio telescope in SETI@Home search of
life in the galaxy and the austrophysics@Swineburne for pulsars. At the server end, the grid is a
network.
Grid Families
Grid technology demands new distributed computing models, software/middleware support,

network protocols, and hardware infrastructures. National grid projects are followed by industrial

grid platform development by IBM, Microsoft, Sun, HP, Dell, Cisco, EMC, Platform
Computing, and others. New grid service providers (GSPs) and new grid applications have

emerged rapidly, similar to the growth of Internet and web services in the past two decades.

8. Explain in detail about service oriented architecture
In grids/web services, Java, and CORBA, an entity is, respectively, a service, a Java object, and a
CORBA distributed object in a variety of languages. These architectures build on the traditional
seven Open Systems Interconnection (OSI) layers that provide the base networking abstractions.
Layered Architecture for Web Services and Grids
The entity interfaces correspond to the Web Services Description Language (WSDL), Java

method, and CORBA interface definition language (IDL) specifications in these example

distributed systems. These interfaces are linked with customized, high-level communication

systems: SOAP, RMI, and IIOP in the three examples. These communication systems support

features including particular message patterns (such as Remote Procedure Call or RPC), fault

recovery, and specialized routing the features in the Web Services Reliable Messaging (WSRM)

framework mimic the OSI layer capability (as in TCP fault tolerance) modified to match the

different abstractions (such as messages versus packets, virtualized addressing) at the entity

levels. Security is a critical capability that either uses or reimplements the capabilities seen in

concepts such as Internet Protocol Security (IPsec) and secure sockets in the OSI layers.
JNDI (Jini and Java Naming and Directory Interface) illustrating different approaches

within the Java distributed object model. The CORBA Trading Service, UDDI (Universal

Description, Discovery, and Integration), LDAP (Lightweight Directory Access Protocol), and
ebXML (Electronic Business using eXtensible Markup Language) are other examples of

discovery and information services described

Web Services and Tools
Loose coupling and support of heterogeneous implementations make services more attractive
than distributed objects. corresponds to two choices of service architecture: web services or

REST systems (these are further discussed in . Both web services and REST systems have very

distinct approaches to building reliable interoperable systems. In web services, one aims to fully
specify all aspects of the service and its environment.
In CORBA and Java, the distributed entities are linked with RPCs, and the simplest way to build
composite applications is to view the entities as objects and use the traditional ways of linking

them together. For Java, this could be as simple as writing a Java program with method calls
replaced by Remote Method Invocation (RMI), while CORBA supports a similar model with a

syntax reflecting the C++ style of its entity (object) interfaces.
The Evolution of SOA
service-oriented architecture (SOA) has evolved over the years. SOA applies to building grids,

clouds, grids of clouds, clouds of grids, clouds of clouds (also known as interclouds), and

systems of systems in general. A large number of sensors provide data-collection services,

denoted in the figure as SS (sensor service). A sensor can be a ZigBee device, a Bluetooth

device, a WiFi access point, a personal computer, a GPA, or a wireless phone, among other

things. Raw data is collected by sensor services.
The evolution of SOA: grids of clouds and grids, where ―SS‖ refers to a sensor service and ―fs‖ to

a filter or transforming service Most distributed systems require a web interface or portal. For raw

data collected by a large number of sensors to be transformed into useful information or knowledge,

the data stream may go through a sequence of compute, storage, filter, and discovery clouds. Finally,

the inter-service messages converge at the portal, which is accessed by all users

Grids versus Clouds
The boundary between grids and clouds are getting blurred in recent years. For web services,
workflow technologies are used to coordinate or orchestrate services with certain specifications
used to define critical business process models such as two-phase transactions
In general, a grid system applies static resources, while a cloud emphasizes elastic resources. For
some researchers, the differences between grids and clouds are limited only in dynamic resource
allocation based on virtualization and autonomic computing. Thus one may end up building with

a system of systems: such as a cloud of clouds, a grid of clouds, or a cloud of grids, or inter-
clouds as a basic SOA architecture.

9. Explain in detail about Grid Architecture and standards
New architecture model and technology has been developed for the establishment and

management of cross-organizational resource sharing. This new architecture, called grid
architecture, identifies the basic components of a grid system. The grid architecture defines the

purpose and functions of its components, while indicating how
these components interact with one another.7 The main focus of the architecture is on

interoperability among resource providers and users in order to establish the sharing
relationships. This interoperability, in turn, necessitates common protocols at each layer of the

architectural model, which leads to the definition of a grid protocol architecture as shown in

Figure.

This protocol architecture defines common mechanisms, interfaces, schema, and protocols at

each layer, by which users and resources can negotiate, establish, manage, and share resources.

Figure 1 shows the component layers of the grid architecture and the capabilities of each layer.

Each layer shares the behavior of the underlying component layers. The following describes the

core features of each of these component layers, starting from the bottom of the stack and

moving upward.
Fabric layer—The fabric layer defines the interface to local resources, which may be shared.
This includes computational resources, data storage, networks, catalogs, software modules, and
other system resources.
● Connectivity layer—The connectivity layer defines the basic communication and
authentication protocols required for grid-specific networkingservice transactions.

● Resource layer—This layer uses the communication and security protocols (defined by the
connectivity
layer) to control secure negotiation, initiation, monitoring, accounting, and payment for the
sharing of functions of individual resources. The resource layer calls the fabric layer functions to

access and control local resources. This layer only handles individual resources, ignoring global
states and atomic actions across the resource collection
pool, which are the responsibility of the collective layer.
● Collective layer—While the resource layer manages an individual resource, the collective
layer is responsible
for all global resource management and interaction with collections of resources. This protocol
layer implements a wide variety of sharing behaviors using a small number of resource-layer and
connectivity-layer protocols.
● Application layer—The application layer enables the use of resources in a grid environment
through various collaboration and resource access protocols.
Thus far, our discussions have focused on the grid problem in the context of a virtual

organization and the proposed grid computing architecture as a suggested solution to this

problem. This architecture is designed for controlled resource sharing with improved

interoperability among participants. In contrast, emerging architectures help the earlier-defined

grid architecture quickly adapt to a wider (and strategically important) technology domain.
10. Explain in detail about Memory, Storage, and Wide-Area Networking

Memory Technology
Plots the growth of DRAM chip capacity from 16 KB in 1976 to 64 GB in 2011. This shows that

memory chips have experienced a 4x increase in capacity every three years. Memory access time
did not improve much in the past. In fact, the memory wall problem is getting worse as the

processor gets faster. For hard drives, capacity increased from 260 MB in 1981 to 250 GB in

2004
The Seagate Barracuda XT hard drive reached 3 TB in 2011. This represents an approximately

10x increase in capacity every eight years. The capacity increase of disk arrays will be even
greater in the years to come. Faster processor speed and larger memory capacity result in a wider

gap between processors and memory
Disks and Storage Technology
Beyond 2011, disks or disk arrays have exceeded 3 TB in capacity. The lower curve in the disk
storage growth in 7 orders of magnitude in 33 years. The rapid growth of flash memory and

solid-state drives (SSDs) also impacts the future of HPC and HTC systems. The mortality rate of
SSD is not bad at all. A typical SSD can handle 300,000 to 1 million write cycles per

System-Area Interconnects
The nodes in small clusters are mostly interconnected by an Ethernet switch or a local area

network (LAN). a LAN typically is used to connect client hosts to big servers. A storage area
network (SAN) connects servers to network storage such as disk arrays. Network attached

storage (NAS) connects client hosts directly to the disk arrays.
All three types of networks often appear in a large cluster built with commercial network
components. If no large distributed storage is shared, a small cluster could be built with a
multiport Gigabit Ethernet switch plus copper cables to link the end machines.

Wide-Area Networking
An increase factor of two per year on network performance was reported, which is faster than
Moore’s law on CPU speed doubling every 18 months. The implication is that more computers

will be used concurrently in the future. High-bandwidth networking increases the capability of
building massively distributed systems.

 Unit – 2 – Grid Services

 Part – A

1. List the OGSA grid service interfaces?

 Port Type Operation

 Grid service Find service data, Termination time and Destroy

 Notification source Subscribe to notification topic

 Notification sink Deliver notification

 Registry Register service and Unregister service

 Factory Create service

 Handle map Find by handle

2. Define Endpoint References in WSRF
The WSRF service addressing mechanism is defined in the WS-addressing standard and uses a term
called an endpoint reference (EPR), which is an XML document that contains various information about
the service and resource. Specifically, the endpoint reference includes both the service address (URI) and

resource identification called a key.
3. What are the specifications of WSRF
WSRF is actually a collection of four specifications (standards):

• WS-ResourceProperties — specifies how resource properties are defined and accessed

• WS-ResourceLifetime — specifies mechanisms to manage resource lifetimes

• WS-ServiceGroup — specifies how to group services or WS-Resources together

• WS-BaseFaults — specifies how to report faults
4. Define Globus 4 information services
Globus 4 information services collectively is called the Monitoring and Discovering System (MDS4 in

GT 4) and consists of a set of three WSRF information components:
• Index service

• Trigger service • WebMDS
from which a framework can be constructed for collecting and using information. The three components
are part of the full GT4 package.
5. Define WebMDS.
WebMDS (Web Monitoring and Discovering System) is a servlet that provides a Web-based interface to
display XML-based information such as resource property information, and as such can be a front-end to
index services.
6. Write about the strategies of replication
The strategies of replication can be classified into method types: dynamic and static. For the static
method, the locations and number of replicas are determined in advance and will not be modified.
Dynamic strategies can adjust locations and number of data replicas according to changes in conditions.
7. Define data grid? List the Grid Data Access Models
A data grid is a set of structured services that provides multiple services like the ability to access alter and
transfer very large amounts of geographically separated data, especially for research and collaboration
purposes.

1. Monadic model 2. Hierarchical model 3. Federation model 4. Hybrid model

8. Define grid data access Federation model
This model is better suited for designing a data grid with multiple sources of data supplies. Sometimes

this model is also known as a mesh model. The data sources are distributed to many different locations.
Although the data is shared, the data items are still owned and controlled by their original owners.

According to predefined access policies, only authenticated users are authorized to request data from any
data source.
9. Write about Parallel Data Transfer
parallel data transfer opens multiple data streams for passing subdivided segments of a file
simultaneously. Although the speed of each stream is the same as in sequential streaming, the total time to
move data in all streams can be significantly reduced compared to FTP transfer.
10. Define Striped Data Transfer
Striped data transfer, a data object is partitioned into a number of sections, and each section is placed in
an individual site in a data grid. When a user requests this piece of data, a data stream is created for each
site, and all the sections of data objects are transferred simultaneously.
11. Write about Monadic access model
This is a centralized data repository model. All the data is saved in a central data repository. When users
want to access some data they have to submit requests directly to the central repository. No data is
replicated for preserving data locality. This model is the simplest to implement for a small grid.
12. Explain grid data access Hierarchical model
This is suitable for building a large data grid which has only one large data access directory. The data may
be transferred from the source to a second-level center. Then some data in the regional center is
transferred to the third-level center. After being forwarded several times, specific data objects are
accessed directly by users.
13. List the basic functionality requirements of grid service

 Discovery and brokering

 Metering and accounting

 Data sharing

 Deployment

 Virtual organizations

 Monitoring

 Policy

14. What are the security requirements of grid service

 Multiple security infrastructures

 Perimeter security solutions

 Authentication, Authorization, and Accounting

 Encryption

 Application and Network-Level Firewalls

 Certification
15. List the System Properties Requirements of grid service

 Fault tolerance

Disaster recovery

 Self-healing capabilities

Strong monitoring

 Legacy application management

Administration.

 Agreement-based interaction

 Grouping/aggregation of services
16. What are the objectives of OGSA?

 Manage resources across distributed heterogeneous platforms

 Support QoS-oriented Service Level Agreements (SLAs).

 Provide a common base for autonomic management

 Define open, published interfaces and protocols for the interoperability of diverse resources.
17. Define grid service instance
A grid service instance is a (potentially taransient) service that conforms to a set of conventions,
expressed as WSDL interfaces, extensions, and behaviors, for such purposes as lifetime management,
discovery of characteristics, and notification.

18. Define grid service handle (GSH)
A grid service handle (GSH) can be thought of as a permanent network pointer to a particular grid service
instance. The GSH does not provide sufficient information to allow a client to access the service instance;
the client needs to ―resolve‖ a GSH into a grid service reference (GSR).
19. Define grid service reference (GSR).
The GSR contains all the necessary information to access the service instance. The GSR is not a
―permanent‖ network pointer to the grid service instance because a GSR may become invalid for various
reasons; for example, the grid service instance may be moved to a different server.
20. What is meant by grid service description
A grid service description describes how a client interacts with service instances. This description is
independent of any particular instance. Within a WSDL document, the grid service description is
embodied in the most derived of the instance, along with its associated portTypes bindings, messages, and
types definitions.
21. List the XML lifetime declaration properties
The three lifetime declaration properties are

1. ogsi:goodFrom

2. ogsi:goodUntil

3. ogsi:availableUntil
22. Define Naming by Attributes in semantic name space
Attribute naming schemes associate various metadata with services and support retrieval via queries on
attribute values. A registry implementing such a scheme allows service providers to publish the existence
and properties of the services that they provide, so that service consumers can discover them.
23. Define naming by path in semantic name space
Path naming or directory schemes (as used, for example, in file systems) represent an alternative approach
to attribute schemes for organizing services into a hierarchical name space that can be navigated.

Part – B

1. Explain in detail about Open Grid Services Architecture
The OGSA is an open source grid service standard jointly developed by academia and the

IT industry under coordination of a working group in the Global Grid Forum (GGF). The

standard was specifically developed for the emerging grid and cloud service communities. The

OGSA is extended from web service concepts and technologies. The standard defines a common

framework that allows businesses to build grid platforms across enterprises and business

partners. The intent is to define the standards required for both open source and commercial

software to support a global grid infrastructure
OGSA Framework

The OGSA was built on two basic software technologies: the Globus Toolkit widely

adopted as a grid technology solution for scientific and technical computing, and web services
(WS 2.0) as a popular standards-based framework for business and network applications. The

OGSA is intended to support the creation, termination, management, and invocation of stateful,
transient grid services via standard interfaces and conventions
OGSA Interfaces

The OGSA is centered on grid services. These services demand special well-defined
application interfaces.
These interfaces provide resource discovery, dynamic service creation, lifetime management,
notification, and manageability. These properties have significant implications regarding how a
grid service is named, discovered, and managed

Grid Service Handle
A GSH is a globally unique name that distinguishes a specific grid service instance from

all others. The status of a grid service instance could be that it exists now or that it will exist in
the future.

These instances carry no protocol or instance-specific addresses or supported protocol

bindings. Instead, these information items are encapsulated along with all other instance-specific
information. In order to interact with a specific service instance, a single abstraction is defined as

a GSR.
Grid Service Migration

This is a mechanism for creating new services and specifying assertions regarding the

lifetime of a service. The OGSA model defines a standard interface, known as a factor, to

implement this reference. This creates a requested grid service with a specified interface and
returns the GSH and initial GSR for the new service instance.

If the time period expires without having received a reaffirmed interest from a client, the
service instance can be terminated on its own and release the associated resources accordingly
OGSA Security Models
The grid works in a heterogeneous distributed environment, which is essentially open to the
general public. We must be able to detect intrusions or stop viruses from spreading by

implementing secure conversations, single logon, access control, and auditing for

nonrepudiation.
At the security policy and user levels, we want to apply a service or endpoint policy,

resource mapping rules, authorized access of critical resources, and privacy protection. At the
Public Key Infrastructure (PKI) service level, the OGSA demands security binding with the

security protocol stack and bridging of certificate authorities (CAs), use of multiple trusted
intermediaries, and so on.

2. Describe in detail about basic functionality requirements and System Properties Requirements

Basic functionality requirements
Discovery and brokering. Mechanisms are required for discovering and/or allocating services,
data, and resources with desired properties. For example, clients need to discover network

services before they are used, service brokers need to discover hardware and software
availability, and service brokers must identify codes and platforms suitable for execution

requested by the client
Metering and accounting. Applications and schemas for metering, auditing, and billing for IT

infrastructure and management use cases. The metering function records the usage and duration,

especially metering the usage of licenses. The auditing function audits usage and application
profiles on machines, and the billing function bills the user based on metering.
Data sharing. Data sharing and data management are common as well as important grid

applications. chanisms are required for accessing and managing data archives, for caching data
and managing its consistency, and for indexing and discovering data and metadata.
Deployment. Data is deployed to the hosting environment that will execute the job (or made

available in or via a high-performance infrastructure). Also, applications (executable) are
migrated to the computer that will execute them
Virtual organizations (VOs). The need to support collaborative VOs introduces a need for
mechanisms to support VO creation and management, including group membership services

[58]. For the commercial data center use case [55], the grid creates a VO in a data center that
provides IT resources to the job upon the customer’s job request.
Monitoring. A global, cross-organizational view of resources and assets for project and fiscal

planning, troubleshooting, and other purposes. The users want to monitor their applications
running on the grid. Also, the resource or service owners need to surface certain states so that the

user of those resources or services may manage the usage using the state information
Policy. An error and event policy guides self-controlling management, including failover and

provisioning. It is important to be able to represent policy at multiple stages in hierarchical
systems, with the goal of automating the enforcement of policies that might otherwise be

implemented as organizational processes or managed manually
System Properties Requirements
Fault tolerance. Support is required for failover, load redistribution, and other techniques used

to achieve fault tolerance. Fault tolerance is particularly important for long running queries that

can potentially return large amounts of data, for dynamic scientific applications, and for
commercial data center applications.
Disaster recovery. Disaster recovery is a critical capability for complex distributed grid

infrastructures. For distributed systems, failure must be considered one of the natural behaviors
and disaster recovery mechanisms must be considered an essential component of the design.
Self-healing capabilities of resources, services and systems are required. Significant manual
effort should not be required to monitor, diagnose, and repair faults.
Legacy application management. Legacy applications are those that cannot be changed, but they

are too aluable to give up or to complex to rewrite. Grid infrastructure has to be built around
them so that they can continue to be used
Administration. Be able to ―codify‖ and ―automate‖ the normal practices used to administer

the environment. The goal is that systems should be able to selforganize and self-describe to
manage low-level configuration details based on higher-level configurations and management

policies specified by administrators.
Agreement-based interaction. Some initiatives require agreement-based interactions capable of

specifying and enacting agreements between clients and servers (not necessarily human) and

then composing those agreements into higher-level end-user structures Grouping/aggregation of

services. The ability to instantiate (compose) services using some set
of existing services is a key requirement. There are two main types of composition techniques:
selection and aggregation. Selection involves choosing to use a particular service among many
services with the same operational interface

3. Explain the following functionality requirements

a) Security requirements
Security requirements
Grids also introduce a rich set of security requirements; some of these requirements are: Multiple

security infrastructures. Distributed operation implies a need to interoperate with and manage

multiple security infrastructures. For example,for a commercial data center application, isolation
of customers in the same commercial data center is a crucial requirement; the grid should

provide not only access control but also performance isolation.
Perimeter security solutions. Many use cases require applications to be deployed on the other
side of firewalls from the intended user clients. Intergrid collaboration often requires crossing

institutional firewalls.
Authentication, Authorization, and Accounting. Obtaining application programs and deploying

them into a grid system may require authentication/authorization. In the commercial data center
use case, the commercial data center authenticates the customer and authorizes the submitted

request when the customer submits a job request.
Encryption. The IT infrastructure and management use case requires encrypting of the

communications, at least of the payload
Application and Network-Level Firewalls. This is a long-standing problem; it is made

particularly difficult by the many different policies one is dealing with and the particularly harsh
restrictions at international sites.
Certification. A trusted party certifies that a particular service has certain semantic behavior. For
example, a company could establish a policy of only using e-commerce services certified by

Yahoo
b) Resource Management Requirements
Resource management is another multilevel requirement, encompassing SLA negotiation,
provisioning, and scheduling for a variety of resource types and activities
Provisioning. Computer processors, applications, licenses, storage, networks, and instruments

are all grid resources that require provisioning. OGSA needs a framework that allows resource
provisioning to be done in a uniform, consistent manner.
Resource virtualization. Dynamic provisioning implies a need for resource virtualization

mechanisms that allow resources to be transitioned flexibly to different tasks as required; for
example, when bringing more Web servers on line as demand exceeds a threshold..
Optimization of resource usage while meeting cost targets (i.e., dealing with finite resources).
Mechanisms to manage conflicting demands from various organizations, groups, projects, and
users and implement a fair sharing of resources and access to the grid
Transport management. For applications that require some form of real-time scheduling, it can

be important to be able to schedule or provision bandwidth dynamically for data transfers or in
support of the other data sharing applications. In many (if not all) commercial applications,

reliable transport management is essential to obtain the end-to-end QoS required by the
application
Management and monitoring. Support for the management and monitoring of resource usage

and the detection of SLA or contract violations by all relevant parties. Also, conflict management
is necessary;
Processor scavenging is an important tool that allows an enterprise or VO to use to aggregate

computing power that would otherwise go to waste
Scheduling of service tasks. Long recognized as an important capability for any information

processing system, scheduling becomes extremely important and difficult for distributed grid
systems.
Load balancing. In many applications, it is necessary to make sure make sure deadlines are met
or resources are used uniformly. These are both forms of load balancing that must be made
possible by the underlying infrastructure

Advanced reservation. This functionality may be required in order to execute the application on

reserved resources.
Notification and messaging. Notification and messaging are critical in most dynamic scientific

problems.
Logging. It may be desirable to log processes such as obtaining/deploying application programs

because, for example, the information might be used for accounting. This functionality is
represented as ―metering and accounting.‖
Workflow management. Many applications can be wrapped in scripts or processes that require

licenses and other resources from multiple sources. Applications coordinate using the file system
based on events
Pricing. Mechanisms for determining how to render appropriate bills to users of a grid.
4. Describe in detail about Practical view of OGSA/OGSI

OGSA aims at addressing standardization (for interoperability) by defining the basic
framework of a grid application structure. Some of the mechanisms employed in the standards
formulation of grid computing
The objectives of OGSA are

Manage resources across distributed heterogeneous platforms
Support QoS-oriented Service Level Agreements (SLAs). The topology of grids is often
complex; the interactions between/among grid resources are almost invariably dynamic.
Provide a common base for autonomic management. A grid can contain a plethora of resources,
along with an abundance of combinations of resource MPICH-G2: Grid-enabled message
passing (Message Passing Interface)
_ CoG Kits, GridPort: Portal construction, based on N-tier architectures

_ Condor-G: workflow management

_ Legion: object models for grid computing

_ Cactus: Grid-aware numerical solver framework

Portals
_ N-tier architectures enabling thin clients, with middle tiers using grid
functions _ Thin clients = web browsers
_ Middle tier = e.g., Java Server Pages, with Java CoG Kit, GPDK, GridPort utilities
_ Bottom tier = various grid resources
_ Numerous applications and projects, e.g.,

_ Unicore, Gateway, Discover, Mississippi Computational Web Portal, NPACI Grid

Port, Lattice Portal, Nimrod-G, Cactus, NASA IPG Launchpad, Grid Resource

Broker

High-Throughput Computing and Condor

_ High-throughput computing

_ Processor cycles/day (week, month, year?) under nonideal circumstances

_ ―How many times can I run simulation X in a month using all available machines?‖
_ Condor converts collections of distributively owned workstations and dedicated clusters
into a distributed high-throughput computing facility _ Emphasis on policy management
and reliability

Object-Based Approaches

_ Grid-enabled CORBA

_ NASA Lewis, Rutgers, ANL, others

_ CORBA wrappers for grid protocols

_ Some initial successes

_ Legion

_ University of Virginia
_ Object models for grid components (e.g., ―vault‖ = storage, ―host‖ =
computer) Cactus: Modular, portable framework for parallel, multidimensional
simulations Construct codes by linking
_ Small core: management services

_ Selected modules: Numerical methods, grids and domain decomps, visualization and
steering, etc.
_ Custom linking/configuration tools

_ Developed for astrophysics, but not astrophysics specific

There are two fundamental requirements for describing Web services based on the OGSI
1.The ability to describe interface inheritance—a basic concept with most of the distributed
object systems.
2. The ability to describe additional information elements with the interface definitions.
5. Explain in detail about Detailed view of OGSA/OGSI

Provides a more detailed view of OGSI based on the OGSI specification itself. For a

more comprehensive description of these concepts, the reader should consult the specification
OGSI defines a component model that extends WSDL and XML schema definition to

incorporate the concepts of
Stateful Web services
_ Extension of Web services interfaces _ Asynchronous notification of state change _
References to instances of services _ Collections of service instances
_ Service state data that augment the constraint capabilities of XML schema
definition Setting the Context
GGF calls OGSI the ―base for OGSA.‖ Specifically, there is a relationship between OGSI and
distributed object systems and also a relationship between OGSI and the existing (and evolving)
Web services framework
Relationship to Distributed Object Systems
Given grid service implementation is an addressable and potentially stateful instance that
implements one or more interfaces described by WSDL portTypes. Grid service factories can be
used to create instances implementing a given set of portType(s).
Client-Side Programming Patterns
Another important issue is
how OGSI interfaces are likely to be invoked from client applications. OGSI exploits an
important component of the Web services framework: the use of WSDL to describe multiple

protocol bindings, encoding styles, messaging styles (RPC versus document oriented), and so on,

for a given Web service.

Client Use of Grid Service Handles and References
Client gains access to a grid service instance through grid service handles and grid service
references. A grid service handle (GSH) can be thought of as a permanent network pointer to a
particular grid service instance.

Relationship to Hosting Environment
OGSI does not dictate a particular service-provider-side implementation architecture. A variety

of approaches are possible, ranging from implementing the grid service instance directly as an
operating system process to a sophisticated server-side mponent model such as J2EE. In the

former case, most or even all support for standard grid service behaviors (invocation, lifetime

management, registration, etc.)

The Grid Service
The purpose of the OGSI document is to specify the (standardized) interfaces and behaviors that
define a grid service
WSDL Extensions and Conventions
OGSI is based on Web services; in particular, it uses WSDL as the mechanism to describe the
public interfaces of grid services.
Service Data
The approach to stateful Web services introduced in OGSI identified the need for a common
mechanism to expose a service instance’s state data to service requestors for query, update, and
change notification.
Motivation and Comparison to JavaBean Properties
OGSI specification introduces the serviceData concept to provide a flexible, properties- style

approach to accessing state data of a Web service. The serviceData concept is similar to the
notion of a public instance variable or field in object-oriented programming languages such as

Java, Smalltalk, and C++.
Extending portType with serviceData

ServiceData defines a newportType child element named serviceData, used to define serviceData
elements, or SDEs, associated with that portType. These serviceData element definitions are
referred to as serviceData declarations, or SDDs.
serviceDataValues.
Each service instance is associated with a collection of serviceData elements: those serviceData
elements defined within the various portTypes that form the service’s interface, and also,
potentially, additional service
SDE Aggregation within a portType Interface Hierarchy
WSDL 1.2 has introduced the notion of multiple portType extension, and one can model that
construct within the GWSDL namespace. A portType can extend zero or more other portTypes
Dynamic serviceData Elements
Although many serviceData elements are most naturally defined in a service’s interface
definition, situations can
arise in which it is useful to add or move serviceData elements dynamically to or from an
instance.
6. Short Notes on
a) Core Grid Service Properties

Service Description and Service Instance
One can distinguish in OGSI between the description of a grid service and an instance of a grid
service:
A grid service description describes how a client interacts with service instances.
This description is independent of any particular instance. Within a WSDL document, the grid
service description is embodied in the most derived portType
A grid service description may be simultaneously used by any number of grid service instances,
each of which
_ Embodies some state with which the service description describes how to interact
_ Has one or more grid service handles
_ Has one or more grid service references to it
Modeling Time in OGSI

The need arises at various points throughout this specification to represent time that is
meaningful to multiple parties in the distributed Grid.

The GMT global time standard is assumed for grid services, allowing operations to refer
unambiguously to absolute times. However, assuming the GMT time standard to represent time

does not imply any particular level of clock synchronization between clients and services in the
grid. In fact, no specific accuracy of synchronization is specified or expected by OGSI, as this is

a service-quality issue
XML Element Lifetime Declaration Properties

Service Data elements may represent instantaneous observations of the dynamic state of a
service instance, it is critical that consumers of serviceData be able to understand the valid
lifetimes of these observations.
The three lifetime declaration properties are:

1.ogsi:goodFrom. Declares the time from which the content of the element is said to be valid.

This is typically the time at which the value was created.
2. ogsi:goodUntil. Declares the time until which the content of the element is said to be valid.
This property must be greater than or equal to the goodFrom time
3.ogsi:availableUntil. Declares the time until which this element itself is expected to be
available, perhaps with updated values. Prior to this time, a client should be able to obtain an
updated copy of this element
b) Grid Service Handles and Grid Service References

Client gains access to a grid service instance through grid service handles and grid
service references. A grid service handle (GSH) can be thought of as a permanent network
pointer to a particular grid service instance.

The client resolves a GSH into a GSR by invoking a HandleResolver grid service
instance identified by some out-of-band mechanism. The HandleResolver can use various means
to do the resolution

7. Explain in detail about Data-Intensive Grid Service Models
Applications in the grid are normally grouped into two categories: computation-intensive

and dataintensive. For data-intensive applications, we may have to deal with massive amounts of

data. For example, the data produced annually by a Large Hadron Collider may exceed several

petabytes (1015 bytes). The grid system must be specially designed to discover, transfer, and

manipulate these massive data sets. Transferring massive data sets is a time-consuming task.

Efficient data management demands low-cost storage and high-speed data movement
Data Replication and Unified Namespace

This data access method is also known as caching, which is often applied to enhance data

efficiency in a grid environment. By replicating the same data blocks and scattering them in
multiple regions of a grid, users can access the same data with locality of references. Replication

strategies determine when and where to create a replica of the data. The factors to consider
include data demand, network conditions, and transfer cost
Grid Data Access Models

Multiple participants may want to share the same data collection. To retrieve any piece of

data, we need a grid with a unique global namespace. Similarly, we desire to have unique file

names. To achieve these, we have to resolve inconsistencies among multiple data objects bearing

the same name Monadic model: This is a centralized data repository model, All the data is saved

in a central data repository. When users want to access some data they have to submit requests

directly to the central repository.
Hierarchical model: The hierarchical model,is suitable for building a large data grid which has

only one large data access directory. The data may be transferred from the source to a second-
level center.
Federation model: This data access model is better suited for designing a data grid with

multiple sources of data supplies. Sometimes this model is also known as a mesh model. Hybrid

model: This data access model. The model combines the best features of the hierarchical and

mesh models. Traditional data transfer technology, such as FTP, applies for networks with lower

bandwidth

Parallel versus Striped Data Transfers
Compared with traditional FTP data transfer, parallel data transfer opens multiple data

streams for passing subdivided segments of a file simultaneously. Although the speed of each

stream is the same as in sequential streaming, the total time to move data in all streams can be
significantly reduced compared to FTP transfer.
8. Short notes on OGSA Service

a) Metering Service
Different grid deployments may integrate different services and resources and feature

different underlying economic motivations and models; however, regardless of these differences,
it is a quasiuniversal requirement that resource utilization can be monitored, whether for

purposes of cost allocation (i.e., charge back), capacity and trend analysis, dynamic provisioning,

grid-service pricing, fraud and intrusion detection, and/or billing.
A grid service may consume multiple resources and a resource may be shared by multiple

service instances. Ultimately, the sharing of underlying resources is managed by middleware and
operating systems.

A metering interface provides access to a standard description of such aggregated data

(metering serviceData). A key parameter is the time window over which measurements are
aggregated. In commercial Unix systems, measurements are aggregated at administrator-defined

intervals (chronological entry), usually daily, primarily for the purpose of accounting.
Several use cases require metering systems that support multitier, end-to-end flows involving

multiple services. An OGSA metering service must be able to meter the resource consumption of

configurable classes of these types of flows executing on widely distributed, loosely coupled

server, storage, and network resources. Configurable classes should support, for example, a

departmental charge-back scenario where incoming requests and their subsequent flows are

partitioned into account classes determined by the department providing the service.
b) Service Groups and Discovery Services

GSHs and GSRs together realize a two-level naming scheme, with HandleResolver
services mapping from handles to references; however, GSHs are not intended to contain

semantic information and indeed may be viewed for most purposes as opaque. Thus, other
entities (both humans and applications) need other means for
discovering services with particular properties, whether relating to interface, function,
availability, location, policy
Attribute naming schemes associate various metadata with services and support retrieval via

queries on attribute values. A registry implementing such a scheme allows service providers to

publish the existence and properties of the services that they provide, so that service consumers

can discover them
A ServiceGroup is a collection of entries, where each entry is a grid service

implementing the rviceGroupEntry interface. The ServiceGroup interface also extends the
GridService interface

It is also envisioned that many registries will inherit and implement the
notificationSource interface so as to facilitate client subscription to register state changes
Path naming or directory schemes (as used, for example, in file systems) represent an

alternative approach to attribute schemes for organizing services into a hierarchical name space
that can be navigated. The two pproaches can be combined, as in LDAP.
c) Rating Service

A rating interface needs to address two types of behaviors. Once the metered information

is available, it has to be translated into financial terms. That is, for each unit of usage, a price has
to be associated with it. This step is accomplished by the rating interfaces, which provide

operations that take the metered information and a rating package as input and output the usage

in terms of chargeable amounts.

For example,
a commercial UNIX system indicates that 10 hours of prime-time resource and 10 hours on
nonprime-time resource are consumed, and the rating package indicates that each hour of prime-

time resource is priced at 2 dollars and each hour of nonprime- time resource is priced at 1
dollar, a rating service will apply the pricing indicated in the rating package

Furthermore, when a business service is developed, a rating service is used to aggregate
the costs of the components used to deliver the service, so that the service owner can determine
the pricing, terms, and conditions under which the service will be offered to subscribe
d) Other Data Services
A variety of higher-level data interfaces can and must be defined on top of the

base data interfaces, to address functions such as: _ Data access and movement

_ Data replication and caching

_ Data and schema mediation

_ Metadata management and looking
Data Replication. Data replication can be important as a means of meeting performance

objectives by allowing local computer resources to have access to local data. Although closely
related to caching (indeed, a ―replica store‖ and a ―cache‖may differ only in their policies),

replicas may provide different interfaces
Data Caching. In order to improve performance of access to remote data items, caching services

will be employed. At the minimum, caching services for traditional flat file data will be
employed. Caching of other data types, such as views on RDBMS data, streaming data, and

application binaries, are also envisioned
Consistency—Is the data in the cache the same as in the source? If not, what is the coherence

window? Different applications have very different requirements. _ Cache invalidation
protocols—How and when is cached data invalidated? _ Write through or write back? When are

writes to the cache committed back to the original data source?
Security—How will access control to cached items be handled? Will access control enforcement

be delegated to the cache, or will access control be somehow enforced by the original data
source? _ Integrity of cached data—Is the cached data kept in memory or on disk? How is it

protected from unauthorized access? Is it encrypted
Schema Transformation. Schema transformation interfaces support the transformation of data

from one schema to another. For example, XML transformations as specified in XSLT.
9. Explain in detail about Open Grid Services Infrastructure and Distributed Logging

The OGSI defines fundamental mechanisms on which OGSA is constructed. These

mechanisms address issues relating to the creation, naming, management, and exchange of
information among entities called grid services. The following list recaps the key OGSI features

and briefly discusses their relevance to OGSA.
Grid Service descriptions and instances. OGSI introduces the twin concepts of the grid service

description and grid service instance as organizing principles of distributed systems.
Grid Service descriptions and instances. OGSI introduces the twin concepts of the grid service

description and grid service instance as organizing principles of distributed systems.
Naming and name resolution. OGSI defines a two-level naming scheme for grid service

instances based on abstract, long-lived grid service handles that can be mapped by
HandleMapper services to concrete but potentially lesslong- lived grid service references.
Fault model. OGSI defines a common approach for conveying fault information from

operations.
Life cycle. OGSI defines mechanisms for managing the life cycle of a grid service instance,
including both explicit destruction and soft-state lifetime management functions for grid service

instances, and grid service factories that can be used to create instances implementing specified
interfaces
Service groups. OGSI defines a means of organizing groups of service instances.
Distributed Logging

Distributed logging can be viewed as a typical messaging application in which message

producers generate log artifacts, (atomic expressions of diagnostic information) that may or may

not be used at a later time by other independent message consumers. OGSA-based logging can

leverage the notification mechanism available in

OGSI as the transport for messages.
Logging services provide the extensions needed to deal with the following issues:

Decoupling. The logical separation of logging artifact creation from logging artifact

consumption. The ultimate usage of the data (e.g., logging, tracing, management) is determined
by the message consumer
Transformation and common representation. Logging packages commonly annotate the data

that they generate with useful common information such as category, priority, time stamp, and
location
Filtering and aggregation. The amount of logging data generated can be large, whereas the

amount of data actually consumed can be small. Therefore, it can be desirable to have a

mechanism for controlling the amount of data generated and for filtering out what is actually
kept and where.
Configurable persistency. Depending on consumer needs, data may have different durability

characteristics. For example, in a real-time monitoring application, data may become irrelevant

quickly, but be needed as soon as it is generated; data for an auditing program may be needed

months or even years after it was generated.
Consumption patterns. Consumption patterns differ according to the needs of the consumer
application. For example, a real-time monitoring application needs to be notified whenever a

particular event occurs, whereas a postmortem problem determination program queries historical

data, trying to find known patterns.
10. Short notes on

a) Job Agreement Service
The job agreement service is created by the agreement factory service with a set of job terms,
including command line, resource requirements, execution environment, data staging, job
control, scheduler directives, and accounting and notification term.
The job agreement service provides an interface for placing jobs on a resource manager (i.e.,
representing a machine or a cluster), and for interacting with the job once it has been dispatched

to the resource manager. The job agreement service provides basic matchmaking capabilities
between the requirements of the job and the underlying resource manager available for running

the job.
The interfaces provided by the job agreement service are:

_ Manageability interface
_ Supported job terms: defines a set of service data used to publish the job terms supported by

this job service, including the job definition (command line and application name), resource
requirements, execution ironment, data staging, job control, scheduler directives, and accounting

and notification terms.
_ Workload status: total number of jobs, statuses such as number of jobs running or pending and
suspended jobs.
_ Job control: control the job after it has been instantiated. This would include the ability to
suspend/resume, checkpoint, and kill the job.

b) Reservation Agreement Service
The reservation agreement service is created by the agreement factory service with a set of terms

including time duration, resource requirement specification, and authorized user/project

agreement terms. The reservation agreement service allows end users or a job agreement service

to reserve resources under the control of a resource manager to guarantee their availability to run

a job. The service allows reservations on any type of resource (e.g., hosts, software licenses, or

network bandwidth). Reservations can be specific (e.g., provide access to host ―A‖ from noon to

5 PM), or more general (e.g., provide access to 16 Linux cpus on Sunday).

The reservation service makes use of information about the existing resource managers available
and any policies that might be defined at the VO level, and will make use of a logging service to

log reservations. It will use the resource manager adapter interfaces to make reservations and to
delete existing reservations.

c) Base Data Services
OGSA data interfaces are intended to enable a service-oriented treatment of data so that data can
be treated in the same way as other resources within the Web/grid services architecture
Four base data interfaces (WSDL portTypes) can be used to implement a variety of different
data service behaviors:
1. DataDescription defines OGSI service data elements representing key parameters of the data

virtualization encapsulated by the data service.
2. DataAccess provides operations to access and/or modify the contents of the data virtualization

encapsulated by the data service.
3. DataFactory provides an operation to create a new data service with a data virtualization

derived from the data virtualization of the parent (factory) data service.
4. DataManagement provides operations to monitor and manage the data service’s data

virtualization, including (depending on the implementation) the data sources (such as database
management systems) that underlie the data service.

Unit – 3 - Virtualization

Part – A

1. Define private cloud.
The private cloud is built within the domain of an intranet owned by a single organization. Therefore,
they are client owned and managed. Their access is limited to the owning clients and their partners. Their

deployment was not meant to sell capacity over the Internet through publicly accessible interfaces. Private

clouds give local users a flexible and agile private infrastructure to run service workloads within their
administrative domains.
2. Define public cloud.
A public cloud is built over the Internet, which can be accessed by any user who has paid for the service.
Public clouds are owned by service providers. They are accessed by subscription. Many companies have

built public clouds, namely Google App Engine, Amazon AWS, Microsoft Azure, IBM Blue Cloud, and
Salesforce Force.com. These are commercial providers that offer a publicly accessible remote interface

for creating and managing VM instances within their proprietary infrastructure.
3. Define hybrid cloud.
A hybrid cloud is built with both public and private clouds, Private clouds can also support a hybrid cloud
model by supplementing local infrastructure with computing capacity from an external public cloud. For
example, the research compute cloud (RC2) is a private cloud built by IBM.
4. List the essential characteristics of cloud computing

1. On-demand capabilities 2. Broad network access 3. Resource pooling
4. Rapid elasticity 5. Measured service

5. List the design objectives of cloud computing.

 Shifting Computing from Desktops to Datacenters

 Service Provisioning and Cloud Economics

 Scalability in Performance

 Data Privacy Protection.

 High Quality of Cloud Services.
6. Define anything-as-a-service.
Providing services to the client on the basis on meeting their demands at some pay per use cost such as
data storage as a service, network as a service, communication as a service etc. it is generally denoted as
anything as a service (XaaS).
7. What is mean by SaaS?
The software as a service refers to browser initiated application software over thousands of paid customer. The

SaaS model applies to business process industry application, consumer relationship management (CRM),

Enterprise resource Planning (ERP), Human Resources (HR) and collaborative application.

8. What is mean by IaaS?

The Infrastructure as a Service model puts together the infrastructure demanded by the user namely
servers, storage, network and the data center fabric. The user can deploy and run on multiple VM’s
running guest OS on specific application.

9. What is PaaS?
The Platform as a Service model enables the user to deploy user built applications onto a virtualized cloud
platform. It includes middleware, database, development tools and some runtime support such as web2.0
and java. It includes both hardware and software integrated with specific programming interface.
10. What is mean by Virtualization?
Virtualization is a computer architecture technology by which multiple virtual machines (VMs) are
multiplexed in the same hardware machine. The purpose of a VM is to enhance resource sharing by many
users and improve computer performance in terms of resource utilization and application flexibility.
11. Define virtual machine monitor.
A traditional computer runs with a host operating system specially tailored for its hardware architecture,
After virtualization, different user applications managed by their own operating systems (guest OS) can
run on the same hardware, independent of the host OS. This is often done by adding additional software,
called a virtualization layer. This virtualization layer is known as hypervisor or virtual machine monitor
(VMM).
12. List the requirements of VMM.

 VMM should provide an environment for programs which is essentially identical to the original
machine.

 Programs run in this environment should show, at worst, only minor decreases in speed.
 VMM should be in complete control of the system resources. Any program run under a VMM

should exhibit a function identical to that which it runs on the original machine directly.
13. Define Host OS and Guest OS.
The guest OS, which has control ability, is called Domain 0, and the others are called Domain U. Domain
0 is a privileged guest OS of Xen. It is first loaded when Xen boots without any file system drivers being
available. Domain 0 is designed to access hardware directly and manage devices.
14. What are the responsibilities of VMM?

 The VMM is responsible for allocating hardware resources for programs.
 It is not possible for a program to access any resource not explicitly allocated to it.
 It is possible under certain circumstances for a VMM to regain control of resources already

allocated.
15. Define CPU virtualization.
CPU architecture is virtualizable if it supports the ability to run the VM’s privileged and unprivileged
instructions in the CPU’s user mode while the VMM runs in supervisor mode. When the privileged

instructions including control- and behavior-sensitive instructions of a VM are executed, they are trapped
in the VMM. In this case, the VMM acts as a unified mediator for hardware access from different VMs to
guarantee the correctness and stability of the whole system.
16. Define memory virtualization.
Virtual memory virtualization is similar to the virtual memory support provided by modern operating
systems. In a traditional execution environment, the operating system maintains mappings of virtual

memory to machine memory using page tables, which is a one-stage mapping from virtual memory to
machine memory. All modern x86 CPUs include a memory management unit (MMU) and a translation

look aside buffer (TLB) to optimize virtual memory performance.
17. What is mean by I/O virtualization?
I/O virtualization involves managing the routing of I/O requests between virtual devices and the shared
physical hardware. There are three ways to implement I/O virtualization:

 full device emulation, Full device emulation is the first approach for I/O virtualization

 para-virtualization

 direct I/O.
18. Distinguish the physical and virtual cluster. (Jan.2014)
A physical cluster is a collection of servers (physical machines) connected by a physical network such as
a LAN. Virtual clusters have different properties and potential applications. There are three critical design
issues of virtual clusters: live migration of virtual machines (VMs), memory and file migrations, and
dynamic deployment of virtual clusters.
19. What is memory migration?

Moving the memory instance of a VM from one physical host to another can be approached in any
number of ways. Memory migration can be in a range of hundreds of megabytes to a few gigabytes in a

typical system today, and it needs to be done in an efficient manner. The Internet Suspend-Resume (ISR)
technique exploits temporal locality as memory states are likely to have considerable overlap in the

suspended and the resumed instances of a VM.
20. What is mean by host based virtualization?
An alternative VM architecture is to install a virtualization layer on top of the host OS. This host OS is
still responsible for managing the hardware. The guest OSes are installed and run on top of the
virtualization layer. Dedicated applications may run on the VMs. Certainly, some other applications can
also run with the host OS directly.
21. Define KVM.
Kernel-Based VM:- This is a Linux para-virtualization system—a part of the Linux version 2.6.20 kernel.
Memory management and scheduling activities are carried out by the existing Linux kernel. The KVM

does the rest, which makes it simpler than the hypervisor that controls the entire machine. KVM is a
hardware-assisted para-virtualization tool, which improves performance and supports unmodified guest

OSes such as Windows, Linux, Solaris, and other UNIX variants
Part – B

1. Explain the cloud computing service and deployment models of cloud

computing Cloud computing service
Infrastructure as a Service (IaaS)

The infrastructure layer builds on the virtualization layer by offering the virtual machines

as a service to users. Instead of purchasing servers or even hosted services, IaaS customers can

create and remove virtual machines and network them together at will. Clients are billed for
infrastructure services based on what resources are consumed. This eliminates the need to

procure and operate physical servers, data storage systems, or networking resources.
Platform as a Service (PaaS)

The platform layer rests on the infrastructure layer’s virtual machines. At this layer

customers do not manage their virtual machines; they merely create applications within an
existing API or programing language. There is no need to manage an operating system, let alone

the underlying hardware and virtualization layers. Clients merely create their own programs
which are hosted by the platform services they are paying for.
Software as a Service (SaaS)

Services at the software level consist of complete applications that do not require

development. Such applications can be email, customer relationship management, and other
office productivity applications. Enterprise services can be billed monthly or by usage, while

software as service offered directly to consumers, such as email, is often provided for free.
Deployment models of cloud computing

The Private Cloud
This model doesn’t bring much in terms of cost efficiency: it is comparable to buying,

building and managing your own infrastructure. Still, it brings in tremendous value from a

security point of view. During their initial adaptation to the cloud, many organizations face

challenges and have concerns related to data security. These concerns are taken care of by this

model, in which hosting is built and maintained for a specific client. The infrastructure required

for hosting can be on-premises or at a third-party location. Security concerns are addressed

through secure-access VPN or by the physical location within the client’s firewall system.
Public Cloud

The public cloud deployment model represents true cloud hosting. In this deployment

model, services and infrastructure are provided to various clients. Google is an example of a

public cloud. This service can be provided by a vendor free of charge or on the basis of a pay-

per-user license policy. This model is best suited for business requirements wherein it is

required to manage load spikes, host SaaS applications, utilize interim infrastructure for

developing and testing applications, and manage applications which are consumed by many

users that would otherwise require large investment in infrastructure from businesses.
Hybrid Cloud

This deployment model helps businesses to take advantage of secured applications and data

hosting on a private cloud, while still enjoying cost benefits by keeping shared data and

applications on the public cloud. This model is also used for handling cloud bursting, which

refers to a scenario where the existing private cloud infrastructure is not able to handle load

spikes and requires a fallback option to support the load. Hence, the cloud migrates workloads

between public and private hosting without any inconvenience to the users. Many PaaS

deployments expose their APIs, which can be further integrated with internal applications or

applications hosted on a private cloud, while still maintaining the security aspects. Microsoft

Azure and Force.com are two examples of this model.
Community Cloud

In the community deployment model, the cloud infrastructure is shared by several

organizations with the same policy and compliance considerations. This helps to further

reduce costs as compared to a private cloud, as it is shared by larger group.Various state-

level government departments requiring access to the same data relating to the local

population or information related to infrastructure, such as hospitals, roads, electrical

stations, etc., can utilize a community cloud to manage applications and data.Cloud

computing is not a ―silver–bullet‖ technology; hence, investment in any deployment model

should be made based on business requirements, the criticality of the application and the

level of support required.
2. a. Compare public cloud with private cloud

A private cloud hosting solution, also known as an internal or enterprise cloud, resides on

company’s intranet or hosted data center where all of your data is protected behind a firewall.

This can be a great option for companies who already have expensive data centers because they

can use their current infrastructure. However, the main drawback people see with a private cloud

is that all management, maintenance and updating of data centers is the responsibility of the

company. Over time, it’s expected that your servers will need to be replaced, which can get very

expensive. On the other hand, private clouds offer an increased level of security and they share

very few, if any, resources with other organizations.
The main differentiator between public and private clouds is that you aren’t responsible

for any of the management of a public cloud hosting solution. Your data is stored in the

provider’s data center and the provider is responsible for the management and maintenance of

the data center. This type of cloud environment is appealing to many companies because it

reduces lead times in testing and deploying new products. However, the drawback is that many

companies feel security could be lacking with a public cloud. Even though you don’t control the

security of a public cloud, all of your data remains separate from others and security breaches of

public clouds are rare.
2. b. Pros and Cons of cloud computing
Pros:
1. Cloud Computing has lower software costs. With Cloud Computing a lot of software is

paid on a monthly basis which when compared to buying the software in the beginning,
software through Cloud Computing is often a fraction of the cost.

2. Eventually your company may want to migrate to a new operating system, the associated
costs to migrate to a new operating system, isoften less than in a traditional server
environment.

3. Centralized data- Another key benefit with Cloud Computing is having all the data (which

could be for multiple branch offices or project sites) in a single location "the Cloud".
4. Access from anywhere- never leave another important document back at the office. With

Cloud computing and an Internet connection, your data are always nearby, even if you are on

the other side of the world.
5. Internet connection is a required for Cloud Computing. You must have an Internet

connection to access your data.
Cons

1. Internet Connection Quality & Cloud Computing
Low Bandwidth -If you can only get low bandwidth Internet (like dial-up) then you should not

https://www.expedient.com/cloud-computing/private-cloud-computing/
https://www.expedient.com/cloud-computing/public-cloud-computing/
https://www.expedient.com/three-security-criteria-to-consider-when-selecting-your-cloud-hosting-provider-2/

consider using Cloud Computing. Bandwidth is commonly referred to as "how fast a connection
is" or what the "speed" of your Internet is. The bandwidth to download data may not be the same
as it is to send data.
Unreliable Internet connection -If you can get high speed Internet but it is unreliable (meaning

your connection drops frequently and/or can be down for long periods at a time), depending on

your business and how these outages will impact your operations, Cloud Computing may not be
for you (or you may need to look into a more reliable and/or additional Internet connection).
Your company will still need a Disaster Recovery Plan, and if you have one now, it will need
to be revised to address the changes for when you are using Cloud Computing.
3. Compare virtual and physical clusters. Explain how resource management done for

virtual clusters.
A physical cluster is a collection of servers (physical machines) connected by a physical

network such as a LAN. Virtual clusters have different properties and potential applications.
There are three critical design issues of virtual clusters: live migration of virtual machines

(VMs), memory and file migrations, and dynamic deployment of virtual clusters
Virtual clusters are built with VMs installed at distributed servers from one or more physical

clusters. The VMs in a virtual cluster are interconnected logically by a virtual network across

several physical networks. Below figure illustrates the concepts of virtual clusters and physical

clusters. Each virtual cluster is formed with physical machines or a VM hosted by multiple

physical clusters. The virtual cluster boundaries are shown as distinct boundaries.
The provisioning of VMs to a virtual cluster is done dynamically to have the following
interesting properties:

• The virtual cluster nodes can be either physical or virtual machines. Multiple VMs running
with different OSes can be deployed on the same physical node.

• A VM runs with a guest OS, which is often different from the host OS, that manages the
resources in the physical machine, where the VM is implemented.

• The purpose of using VMs is to consolidate multiple functionalities on the same server.

This will greatly enhance server utilization and application flexibility.
VMs can be colonized (replicated) in multiple servers for the purpose of promoting

distributed parallelism, fault tolerance, and disaster recovery.
• The size (number of nodes) of a virtual cluster can grow or shrink dynamically, similar to

the way an overlay network varies in size in a peer-to-peer (P2P) network.
• The failure of any physical nodes may disable some VMs installed on the failing nodes. But

the failure of VMs will not pull down the host system.

Below diagram shows the concept of a virtual cluster based on application partitioning or

customization. The different colors in the figure represent the nodes in different virtual clusters.

As a large number of VM images might be present, the most important thing is to determine how

to store those images in the system efficiently. There are common installations for most users or

applications, such as operating systems or user-level programming libraries. These software

packages can be preinstalled as templates (called template VMs). With these templates, users can

build their own software stacks. New OS instances can be copied from the template VM. User-

specific components such as programming libraries and applications can be installed to those
instances.

4. Explain the trust management in virtual clusters.
A VMM changes the computer architecture. It provides a layer of software between the

operating systems and system hardware to create one or more VMs on a single physical platform.

A VM entirely encapsulates the state of the guest operating system running inside it.

Encapsulated machine state can be copied and shared over the network and removed like a

normal file, which proposes a challenge to VM security. In general, a VMM can provide secure

isolation and a VM accesses hardware resources through the control of the VMM, so the VMM

is the base of the security of a virtual system. Normally, one VM is taken as a management VM

to have some privileges such as creating, suspending, resuming, or deleting a VM.
Once a hacker successfully enters the VMM or management VM, the whole system is in

danger. A subtler problem arises in protocols that rely on the ―freshness‖ of their random number

source for generating session keys. Considering a VM, rolling back to a point after a random

number has been chosen, but before it has been used, resumes execution; the random number,

which must be ―fresh‖ for security purposes, is reused. With a stream cipher, two different

plaintexts could be encrypted under the same key stream, which could, in turn, expose both

plaintexts if the plaintexts have sufficient redundancy. Non-cryptographic protocols that rely on

freshness are also at risk. For example, the reuse of TCP initial sequence numbers can raise TCP

hijacking attacks.

VM-Based Intrusion Detection
Intrusions are unauthorized access to a certain computer from local or network users and

intrusion detection is used to recognize the unauthorized access. An intrusion detection system

(IDS) is built on operating systems, and is based on the characteristics of intrusion actions. A

typical IDS can be classified as a host-based IDS (HIDS) or a network-based IDS (NIDS),

depending on the data source. A HIDS can be implemented on the monitored system. When the

monitored system is attacked by hackers, the HIDS also faces the risk of being attacked. A NIDS

is based on the flow of network traffic which can’t detect fake actions. Virtualization-based

intrusion detection can isolate guest VMs on the same hardware platform. Even some VMs can

be invaded successfully; they never influence other VMs, which is similar to the way in which a

NIDS operates. Furthermore, a VMM monitors and audits access requests for hardware and

system software. This can avoid fake actions and possess the merit of a HIDS. There are two

different methods for implementing a VM-based IDS: Either the IDS is an independent process

in each VM or a high-privileged VM on the VMM; or the IDS is integrated into the VMM and

has the same privilege to access the hardware as well as the VMM.

The VM-based IDS contains a policy engine and a policy module. The policy framework can

monitor events in different guest VMs by operating system interface library and PTrace indicates

trace to secure policy of monitored host. It’s difficult to predict and prevent all intrusions without

delay. Therefore, an analysis of the intrusion action is extremely important after an intrusion

occurs. At the time of this writing, most computer systems use logs to analyze attack actions, but

it is hard to ensure the credibility and integrity of a log. The IDS log service is based on the

operating system kernel. Thus, when an operating system is invaded by attackers, the log service

should be unaffected.
Besides IDS, honeypots and honey nets are also prevalent in intrusion detection. They attract and

provide a fake system view to attackers in order to protect the real system. In addition, the attack

action can be analyzed, and a secure IDS can be built. A honeypot is a purposely defective

system that simulates an operating system to cheat and monitor the actions of an attacker. A

honeypot can be divided into physical and virtual forms. A guest operating system and the

applications running on it constitute a VM. The host operating system and VMM must be

guaranteed to prevent attacks from the VM in a virtual honeypot.

5. Explain the virtualization for data center automation.
The dynamic nature of cloud computing has pushed data center workload, server,

and even hardware automation to whole new levels. Now, any data center provider
looking to get into cloud computing must look at some form of automation to help them

be as agile as possible in the cloud world.
New technologies are forcing data center providers to adopt new methods to increase

efficiency, scalability and redundancy. Let’s face facts; there are numerous big trends which
have emphasized the increased use of data center facilities. These trends include:
 More users

 More devices

 More cloud

 More workloads

 A lot more data
As infrastructure improves, more companies have looked towards the data center provider

to offload a big part of their IT infrastructure. With better cost structures and even better

incentives in moving towards a data center environment, organizations of all sizes are looking at
colocation as an option for their IT environment.

With that, data center administrators are teaming with networking, infrastructure and cloud
architects to create an even more efficient environment. This means creating intelligent systems

from the hardware to the software layer. This growth in data center dependency has resulted in
direct growth around automation and orchestration technologies.

Now, organizations can granularly control resources, both internally and in the cloud. This
type of automation can be seen at both the software layer as well as the hardware layer. Vendors

like BMC, ServiceNow, and Microsoft SCCM/SCOM are working towards unifying massive
systems under one management engine to provide a single pain of glass into the data center

workload environment

.

Furthermore, technologies like the Cisco UCS platform allow administrators to virtualize
the hardware layer and create completely automated hardware profiles for new blades and

servers. This hardware automation can then be tied into software-based automation tools like
SCCM. Already we’re seeing direct integration between software management tools and the

hardware layer.
Finally, from a cloud layer, platforms like CloudStack and OpenStack allow organizations

to create orchestrated and automated fluid cloud environments capable of very dynamic
scalability. Still, when a physical server or hardware component breaks – we still need a person

to swap out that blade.
To break it down, it’s important to understand what layers of automation and orchestration

are available now – and what might be available in the future. The automation and orchestration
layers
Server layer. Server and hardware automation have come a long way. As mentioned earlier,

there are systems now available which take almost all of the configuration pieces out of

deploying a server. Administrators only need to deploy one server profile and allow new servers

to pick up those settings. More data centers are trying to get into the cloud business. This means

deploying high-density, fast-provisioned, servers and blades. With the on-demand nature of the

cloud, being able to quickly deploy fully configured servers is a big plus for staying agile and

very proactive.
Software layer. Entire applications can be automated and provisioned based on usage and

resource utilization. Using the latest load-balancing tools, administrators are able to set

thresholds for key applications running within the environment. If a load-balancer, a NetScaler

for example, sees that a certain type of application is receiving too many connections, it can set

off a process that will allow the administrator to provision another instance of the application or

a new server which will host the app.
Virtual layer. The modern data center is now full of virtualization and virtual machines. In

using solutions like Citrix’s Provisioning Server or Unidesk’s layering software technologies,

administrators are able to take workload provisioning to a whole new level. Imagine being able

to set a process that will kick-start the creation of a new virtual server when one starts to get

over-utilized. Now, administrators can create truly automated virtual machine environments

where each workload is monitored, managed and controlled.
Cloud layer. This is a new and still emerging field. Still, some very large organizations are

already deploying technologies like CloudStack, OpenStack, and even OpenNebula.

Furthermore, they’re tying these platforms in with big data management solutions like

MapReduce and Hadoop. What’s happening now is true cloud-layer automation. Organizations

can deploy distributed data centers and have the entire cloud layer managed by a cloud-control

software platform. Engineers are able to monitor workloads, how data is being distributed, and

the health of the cloud infrastructure. The great part about these technologies is that

organizations can deploy a true private cloud, with as much control and redundancy as a public

cloud instance.
Data center layer. Although entire data center automation technologies aren’t quite here yet, we

are seeing more robotics appear within the data center environment. Robotic arms already

control massive tape libraries for Google and robotics automation is a thoroughly discussed

concept among other large data center providers. In a recent article, we discussed the concept of

a ―lights-out‖ data center in the future. Many experts agree that eventually, data center

automation and robotics will likely make its way into the data center of tomorrow. For now,

automation at the physical data center layer is only a developing concept.
The need to deploy more advanced cloud solution is only going to grow. More

organizations of all verticals and sizes are seeing benefits of moving towards a cloud platform.

At the end of the day, all of these resources, workloads and applications have to reside
somewhere. That somewhere is always the data center.

In working with modern data center technologies administrators strive to be as efficient
and agile as possible. This means deploying new types of automation solutions which span the

http://www.datacenterknowledge.com/archives/2013/05/22/the-data-center-of-tomorrow-totally-lights-out-within-5-years/
http://www.datacenterknowledge.com/archives/2013/05/22/the-data-center-of-tomorrow-totally-lights-out-within-5-years/

entire technology stack. Over the upcoming couple of years, automation and orchestration
technologies will continue to become popular as the data center becomes an even more core
piece for any organization.
6. Explain implementation levels of virtualization in details.
Virtualization is computer architecture technology by which multiple virtual machines are

multiplexed in the same hardware machine. The idea of VMs can be dated back to the 1960s.

The purpose of a VM is to enhance resource sharing by many users and improve computer

performance in terms of resource utilization and application flexibility. Hardware resources or

software resources can be virtualized in various functional layers. Levels of virtualization

implementation
A traditional computer runs with a host OS specially tailored for its hardware architecture. After
virtualization different user applications managed by their own OS (Guest OS) can run on the

same hardware, independent of the host OS. This is often done by adding additional software
called virtualization layer. This virtualization layer is known as hypervisor or Virtual Machine
Monitor.
The main function of the software layer for virtualization is to virtualize the physical hardware of
a host machine into virtual resources to be used by the VMs exclusively. Common virtualization

layers include the instruction set architecture level, hardware level, OS Level, Library support

level and application level.
Instruction set architecture
At the ISA level virtualization is performed by emulating a given ISA by the ISA of the host
machine. For example, MIPS binary code can run on an 8086 based host machine with help of
ISA emulation.
The basic emulation method is through code interpretation. An interpreter program interprets the
source instructions to target instructions one by one. One source instruction may require tens or
hundreds of native target instructions to perform its function.
Hardware Architecture
Hardware level virtualization is performed right on top of the bar hardware. On the one hand this
approach generates a virtual hardware environment for a VM. On the other hand the process
manages the underlying hardware through virtualization.
The idea is to virtualize a computers resources, such as its processors, memory and I/O
devices OS Level
This refers to an abstraction layer between traditional OS and user application. OS level
virtualization creates isolated containers on a single physical server and the OS instances to
utilize the hardware and software in data centers.
Library Support Level
Most application use APIs exported by user level libraries rather than using lengthy system calls

by the OS. Since most systems provide well documented APIs, such an interface becomes
another candidate for virtualization. Virtualization with library interfaces is possible by

controlling the communication link between applications and the rest of a system through API
hooks.

User Application Level
Virtualization at the application level virtualizes an application as a VM. On a traditional OS, an
application often runs as a process. Therefore, application level virtualization is known as
process level virtualization. The most popular approach is to deploy high level language VMs.

7. Explain the virtualization of CPU, Memory and I/O

devices Virtualization of CPU
A VM is a duplicate of an existing computer system in which a majority of the VM instructions

are executed on the host processor in native mode. Thus, unprivileged instructions of VMs run
directly on the host machine for higher efficiency. The critical instructions are divided into three

categories.
 Privileged instructions

 Control sensitive instructions

 Behaviour sensitive instructions

Privileged instructions execute in a privileged mode and will be trapped if executes outside this
mode.
Control sensitive instructions attempt to change the configuration of resources used.
Behavior sensitive instructions have different behaviors depending on the configuration of
resources, including the load and store operations over the virtual memory.
A CPU architecture is virtualizable if it supports the ability to run the VM’s privileged and
unprivileged instructions in the CPU’s user mode while the VMM run in supervisor mode. When

the privileged instructions including control and behavior sensitive instructions of a VM are
executed they are trapped in the VMM.
RISC CPU architectures can be naturally virtualized because all control and behavior sensitive
instructions are privileged instruction.
Hardware Assisted CPU virtualization
 Processors with virtualization technology have extra instruction set called virtual machine

extensions or VMX.

 There are two modes to run under virtualization: root operation and non-root operation.
Usually only the virtualization controlling software, called Virtual Machine Monitor (VMM),
runs under root operation, while operating systems running on top of the virtual machines run
under non-root operation. Software running on top of virtual machines is also called ‛guest
software‚.

 To enter virtualization mode, the software should execute the VMXON instruction and
then call the VMM software. Then VMM software can enter each virtual machine using the
VMLAUNCH instruction, and exit it by using the VMRESUME. If VMM wants to shut down
and exit virtualization mode, it executes the VMXOFF instruction.

Memory Virtualization
Virtual memory virtualization is similar to the virtual memory support provided by modern

operating systems. In a traditional execution environment the OS maintains mappings of virtual

memory to machine memory using page tables, which is one stage mapping from virtual memory

to machine memory. All modern x86 CPUs include a Memory management Unit and a

translation Look-aside Buffer to optimize virtual memory performance. In virtual execution

environment virtual memory virtualization involves sharing the physical system memory in

RAM and dynamically allocating it to the physical memory of the VMs.

Guest OS sees flat ‚physical‛ address space.

Page tables within guest OS: • Translate from virtual to physical addresses.

Second-level mapping: • Physical addresses to machine addresses.

VMM can swap a VM’s pages to disk.

Traditional way is to have the VMM maintain a shadow of the VM’s page table.
The shadow page table controls which pages of machine memory are assigned to a given VM.
When OS updates it’s page table, VMM updates the shadow

I/O Virtualization
Input/output (I/O) virtualization is a methodology to simplify management, lower costs

and improve performance of servers in enterprise environments. I/O virtualization environments
are created by abstracting the upper layer protocols from the physical connections.

The technology enables one physical adapter card to appear as multiple virtual network
interface cards (vNICs) and virtual host bus adapters (vHBAs). Virtual NICs and HBAs function

as conventional NICs and HBAs, and are designed to be compatible with existing operating
systems, hypervisors, and applications. To networking resources (LANs and SANs), they appear

as normal cards.
In the physical view, virtual I/O replaces a server’s multiple I/O cables with a single

cable that provides a shared transport for all network and storage connections. That cable (or

commonly two cables for redundancy) connects to an external device, which then provides
connections to the data center networks.

https://en.wikipedia.org/wiki/Input/output
https://en.wikipedia.org/wiki/Server_(computing)
https://en.wikipedia.org/wiki/Internet_Protocol_Suite
https://en.wikipedia.org/wiki/Physical_Layer
https://en.wikipedia.org/wiki/Network_interface_card
https://en.wikipedia.org/wiki/Network_interface_card
https://en.wikipedia.org/wiki/Virtuality
https://en.wikipedia.org/wiki/Virtuality
https://en.wikipedia.org/wiki/Host_adapter
https://en.wikipedia.org/wiki/Operating_systems
https://en.wikipedia.org/wiki/Operating_systems
https://en.wikipedia.org/wiki/Operating_systems
https://en.wikipedia.org/wiki/LAN
https://en.wikipedia.org/wiki/Storage_area_network
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Data_centre#Network_infrastructure

Server I/O is a critical component to successful and effective server deployments,
particularly with virtualized servers. To accommodate multiple applications, virtualized servers

demand more network bandwidth and connections to more networks and storage. According to a
survey, 75% of virtualized servers require 7 or more I/O connections per device, and are likely to

require more frequent I/O reconfigurations.
In virtualized data centers, I/O performance problems are caused by running numerous

virtual machines (VMs) on one server. In early server virtualization implementations, the number

of virtual machines per server was typically limited to six or less. But it was found that it could

safely run seven or more applications per server, often using 80 percentage of total server

capacity, an improvement over the average 5 to 15 percentage utilized with non-virtualized

servers.

Virtualization I/O stack

Translates guest I/O addresses to host addresses

Handles inter VM communication

Multiplexes I/O requests from/to the physical device

Provides enterprise-class I/O features to the Guest
8. a. Para-Virtualization with Compiler Support
Para-virtualization needs to modify the guest operating systems. A para-virtualized VM provides

special APIs requiring substantial OS modifications in user applications. Performance

degradation is a critical issue of a virtualized system. No one wants to use a VM if it is much

slower than using a physical machine. The virtualization layer can be inserted at different

positions in a machine software stack. However, para-virtualization attempts to reduce the

virtualization overhead, and thus improve performance by modifying only the guest OS kernel.

The concept of a para-virtualized VM architecture. The guest operating systems are para-

virtualized.

https://en.wikipedia.org/wiki/Bandwidth_(computing)
https://en.wikipedia.org/wiki/Data_center
https://en.wikipedia.org/wiki/Virtual_machine

They are assisted by an intelligent compiler to replace the nonvirtualizable OS instructions by
hypercalls as llustrated in below figure. The traditional x86 processor offers four instruction

execution rings: Rings 0, 1, 2, and 3. The lower the ring number, the higher the privilege of
instruction being executed. The OS is responsible for managing the hardware and the privileged

instructions to execute at Ring 0, while user-level applications run at Ring 3.

Para-Virtualization Architecture
When the x86 processor is virtualized, a virtualization layer is inserted between the

hardware and the OS. According to the x86 ring definition, the virtualization layer should also be

installed at Ring 0. Different instructions at Ring 0 may cause some problems. In above diagram,

we show that para-virtualization replaces nonvirtualizable instructions with hypercalls that

communicate directly with the hypervisor or VMM. However, when the guest OS kernel is

modified for virtualization, it can no longer run on the hardware directly.
Although para-virtualization reduces the overhead, it has incurred other problems. First,

its compatibility and portability may be in doubt, because it must support the unmodified OS as

well. Second, the cost of maintaining para-virtualized OSes is high, because they may require

deep OS kernel modifications. Finally, the performance advantage of para-virtualization varies

greatly due to workload variations. Compared with full virtualization, para-virtualization is

relatively easy and more practical. The main problem in full virtualization is its low performance

in binary translation. To speed up binary translation is difficult. Therefore, many virtualization

products employ the para-virtualization architecture. The popular Xen, KVM, and VMware ESX

are good examples.
8. b. Binary Translation with Full Virtualization
Depending on implementation technologies, hardware virtualization can be classified into two
categories:
Full virtualization and host-based virtualization. Full virtualization does not need to modify the

host OS. It relies on binary translation to trap and to virtualize the execution of certain sensitive,

nonvirtualizable instructions. The guest OSes and their applications consist of noncritical and

critical instructions. In a host-based system, both a host OS and a guest OS are used. A

virtualization software layer is built between the host OS and guest OS. These two classes of VM

architecture are introduced next.
Full Virtualization
With full virtualization, noncritical instructions run on the hardware directly while critical

instructions are discovered and replaced with traps into the VMM to be emulated by software.

Both the hypervisor and VMM approaches are considered full virtualization. Why are only

critical instructions trapped into the VMM? This is because binary translation can incur a large

performance overhead. Noncritical instructions do not control hardware or threaten the security

of the system, but critical instructions do. Therefore, running noncritical instructions on

hardware not only can promote efficiency, but also can ensure system security.

Binary Translation of Guest OS Requests Using a VMM
This approach was implemented by VMware and many other software companies. VMware puts

the VMM at Ring 0 and the guest OS at Ring 1. The VMM scans the instruction stream and

identifies the privileged, control- and behavior-sensitive instructions. When these instructions are

identified, they are trapped into the VMM, which emulates the behavior of these instructions.

The method used in this emulation is called binary translation. Therefore, full virtualization

combines binary translation and direct execution. The guest OS is completely decoupled from

the underlying hardware. Consequently, the guest OS is unaware that it is being virtualized. The

performance of full virtualization may not be ideal, because it involves binary translation which

is rather time-consuming. In particular, the full virtualization of I/O-intensive applications is a

really a big challenge. Binary translation employs a code cache to store translated hot

instructions to improve performance, but it increases the cost of memory usage. At the time of

this writing, the performance of full virtualization on the x86 architecture is typically 80 percent

to 97 percent that of the host machine.

Host-Based Virtualization
An alternative VM architecture is to install a virtualization layer on top of the host OS. This host

OS is still responsible for managing the hardware. The guest OSes are installed and run on top of

the virtualization layer. Dedicated applications may run on the VMs. Certainly, some other

applications can also run with the host OS directly. This hostbased architecture has some distinct

advantages, as enumerated next. First, the user can install this VM architecture without

modifying the host OS. The virtualizing software can rely on the host OS to provide device

drivers and other low-level services. This will simplify the VM design and ease its deployment.

Second, the host-based approach appeals to many host machine configurations. Compared to the

hypervisor/VMM architecture, the performance of the host-based architecture may also be low.

When an application requests hardware access, it involves four layers of mapping which

downgrades performance significantly. When the ISA of a guest OS is different from the ISA of

the underlying hardware, binary translation must be adopted. Although the host-based

architecture has flexibility, the performance is too low to be useful in practice.
9. Explain the characteristics and types of virtualization in cloud computing.
Virtualization is using computer resources to imitate other computer resources or whole
computers. It separates resources and services from the underlying physical delivery
environment.
Virtualization has three characteristics that make it ideal for cloud computing:
Partitioning: In virtualization, many applications and operating systems (OSes) are supported in

a single physical system by partitioning (separating) the available resources.
Isolation: Each virtual machine is isolated from its host physical system and other virtualized

machines. Because of this isolation, if one virtual-instance crashes, it doesn’t affect the other
virtual machines. In addition, data isn’t shared between one virtual container and another.
Encapsulation: A virtual machine can be represented (and even stored) as a single file, so you

can identify it easily based on the service it provides. In essence, the encapsulated process could
be a business service. This encapsulated virtual machine can be presented to an application as a

complete entity. Therefore, encapsulation can protect each application so that it doesn’t interfere
with another application.
Types:
Virtualization can be utilized in many different ways and can take many forms aside from just

server virtualization. The main types include application, desktop, user, storage and hardware.

Application virtualization allows the user to access the application, not from their workstation,

but from a remotely located server. The server stores all personal information and other

characteristics of the application, but can still run on a local workstation. Technically, the

application is not installed, but acts like it is.
Desktop virtualization allows the users’ OS to be remotely stored on a server in the data center,
allowing the user to then access their desktop virtually, from any location.
User virtualization is pretty similar to desktop, but allows users the ability to maintain a fully

personalized virtual desktop when not on the company network. Users can basically log into

their ―desktop‖ from different types of devices like smartphones and tablets. With more

companies migrating to a BYOD policy, desktop and user virtualization are becoming
increasingly popular.
Storage virtualization is the process of grouping the physical storage from multiple network

storage devices so that it acts as if it’s on one storage device.
Hardware virtualization (also referred to as hardware-assisted virtualization) is a form of

virtualization that uses one processor to act as if it were several different processors. The user
can then run different operating systems on the same hardware, or more than one user can use the

processor at the same time. This type of virtualization requires a virtual machine manager (VM)
called a hypervisor.
10. Explain the NIST reference architecture of cloud computing in detail
The Conceptual Reference Model Figure 1 presents an overview of the NIST cloud computing

reference architecture, which identifies the major actors, their activities and functions in cloud
computing. The diagram depicts a generic high-level architecture and is intended to facilitate the

understanding of the requirements, uses, characteristics and standards of cloud computing.

Figure 1: The Conceptual Reference Model

As shown in Figure 1, the NIST cloud computing reference architecture defines five major
actors: cloud consumer, cloud provider, cloud carrier, cloud auditor and cloud broker. Each actor

is an entity (a person or an organization) that participates in a transaction or process and/or
performs tasks in cloud computing.

http://blog.carpathia.com/byod-and-data-security-is-the-private-cloud-the-best-solution/
http://en.wikipedia.org/wiki/Hypervisor

 Actor Definition

 Cloud

 Consumer A person or organization that maintains a business relationship

 with, and uses service from, Cloud Providers.

 Cloud

 Provider A person, organization, or entity responsible for making a

 service available to interested parties.

 Cloud

 Auditor A party that can conduct independent assessment of cloud

 services, information system operations, performance and

 security of the cloud implementation.

 Cloud Broker An entity that manages the use, performance and delivery of

 cloud services, and negotiates relationships between Cloud

 Providers and Cloud Consumers.

 Cloud

 Carrier An intermediary that provides connectivity and transport of

 cloud services from Cloud Providers to Cloud Consumers.

 Unit – 4 – Progamming Model
 Part – A

1. List out the grid middleware packages

 Package Description

 BOINC Berkeley Open Infrastructure for Network Computing.

 UNICORE Middleware developed by the German grid computing community

 Globus (GT4) A middleware library jointly developed by Argonne National Lab.

 CGSP in ChinaGrid The CGSP (ChinaGrid Support Platform) is a middleware library

 developed by 20 top universities in China as part of the ChinaGrid

 Project

 Condor-G Originally developed at the Univ. of Wisconsin for general distributed

 computing, and later extended to Condor-G for grid job management.

 Sun Grid Engine (SGE) Developed by Sun Microsystems for business grid applications. Applied

 to private grids and local clusters within enterprises or campuses.

2. Define MapReduce.

The mapreduce software framework provides an abstraction layer with the data flow and flow of control

of users and hides implementation of all data flow steps such as data partitioning mapping,

synchronization, communication and scheduling. The data flow is such framework is predefined the

abstraction layer provides two well defined interface in the form of two functions map and reduce.

3. What is the role of Map function?
Each Map function receives the input data split as a set of (key, value) pairs to process and produce the

intermediated (key, value) pairs.

4. What is the role of Reduce function?

The reduce worker iterates over the grouped (key, value) pairs, and for each unique key, it sends the key

and corresponding values to the Reduce function. Then this function processes its input data and stores

the output results in predetermined files in the user’s program.

5. List out the Hadoop core fundamental layers
The Hadoop core is divided into two fundamental layers: the MapReduce engine and HDFS. The

MapReduce engine is the computation engine running on top of HDFS as its data storage manager. HDFS

is a distributed file system inspired by GFS that organizes files and stores their data on a distributed

computing system.

6. What are the features of HDFS?

HDFS is not a general-purpose file system, as it only executes specific types of applications, it does not

need all the requirements of a general distributed file system. For example, security has never been

supported for HDFS systems.

7. List the areas where HDFS cannot be
used? Low-latency data access
Lots of small files

Multiple writers, arbitrary file modifications
8. Why is a block in HDFS so large?
HDFS blocks are large compared to disk blocks, and the reason is to minimize the cost of seeks. By
making a block large enough, the time to transfer the data from the disk can be made to be significantly
larger than the time to seek to the start of the block. Thus the time to transfer a large file made of multiple

blocks operates at the disk transfer rate.
9. Define Namenode in HDFS
The namenode manages the filesystem namespace. It maintains the filesystem tree and the metadata for

all the files and directories in the tree. This information is stored persistently on the local disk in the form
of two files: the namespace image and the edit log. The namenode also knows the datanodes on which all
the blocks for a given file are located, however, it does not store block locations persistently, since this
information is reconstructed from datanodes when the system starts.
10. Define Datanode in HDFS
Datanodes are the work horses of the filesystem. They store and retrieve blocks when they are told to (by
clients or the namenode), and they report back to the namenode periodically with lists of blocks that they
are storing.
11. What are the permission models for files and directories in HDFS
There are three types of permission: the read permission (r), the write permission (w) and the execute

permission (x). The read permission is required to read files or list the contents of a directory. The write
permission is required to write a file, or for a directory, to create or delete files or directories in it. The
execute permission is ignored for a file since you can’t execute a file on HDFS (unlike POSIX), and for a
directory it is required to access its children.
12. Define FUSE interface?
Filesystem in Userspace (FUSE) allows filesystems that are implemented in user space to be integrated as

a Unix filesystem. Hadoop’s Fuse-DFS contrib module allows any Hadoop filesystem (but typically
HDFS) to be mounted as a standard filesystem. You can then use Unix utilities (such as ls and cat) to

interact with the filesystem, as well as POSIX libraries to access the filesystem from any programming
language. Fuse-DFS is implemented in C using libhdfs as the interface to HDFS.
13. Define globbing in HDFS?
It is a common requirement to process sets of files in a single operation.. To enumerate each file and
directory to specify the input, it is convenient to use wildcard characters to match multiple files with a
single expression, an operation that is known as globbing.
14. How to process globs in hadoop filesystem?
Hadoop provides two FileSystem methods for processing globs:

public FileStatus[] globStatus(Path pathPattern) throws IOException

public FileStatus[] globStatus(Path pathPattern, PathFilter filter) throws IOException
The globStatus() methods returns an array of FileStatus objects whose paths match the supplied pattern,
sorted by path. An optional PathFilter can be specified to restrict the matches further
15. How to delete file or directory in hadoop filesystem?
Use the delete() method on FileSystem to permanently remove files or directories:

public boolean delete(Path f, boolean recursive) throws IOException
If f is a file or an empty directory, then the value of recursive is ignored. A nonempty directory is only
deleted, along with its contents, if recursive is true (otherwise an IOException is thrown).
16. Define iterative MapReduce.
It is important to understand the performance of different runtime and in particular to compare MPI and
map reduce. The two major sources of parallel overhead are load imbalance and communication. The
communication overhead in mapreduce can be high for two reasons.

 Mapreduce read and writes files whereas MPI transfer information directly between nodes over
the network.

 MPI does not transfer all data from node to node.
17. Define HDFS.
HDFS is a distributed file system inspired by GFS that organizes files and stores their data on a
distributed computing system. The hadoop implementation of mapreduce uses the hadoop distributed file
system as in underlying layer rather than GFS.

18. List the characteristics of HDFS.

 HDFS fault tolerance

 Block replication

 Relica placement

 Heartbeat and block report messages

 HDFS high throughput access to large dataset.
19. What are the operations of HDFS?
The control flow of HDFS operation such as read and write can properly highlights role of the name node
and data node in the managing operations. The control flow of the main operations of HDFS on file is
further described to manifest the interaction between the users.
20. Define block replication.
The reliably store data in HDFS is the file blocks, it is replicated in this system. HDFS store a file as a set
of blocks and each block is replicated and distributed across the whole cluster.
21. Define heart beat in Hadoop. What are the advantages of heart beat?
The heart beat are periodic messages sent to the name node by each data node in the cluster. Receipt of a
heartbeat implies that data mode is functioning properly while each block report contains list of all blocks
in a data mode. The name node receives such messages because it is the sole decision maker of all
replicas in the system.
22. List out the functional modules in globus GT4 library

Service Functionality Module Functional Description

 Name

Global Resource Allocation GRAM Grid Resource Access and Management (HTTP-

Manager based)

Communication Nexus Unicast and multicast communication

Grid Security Infrastructure GSI Authentication and related security services

Monitory and Discovery MDS Distributed access to structure and state information
Service

Health and Status HBM Heartbeat monitoring of system components

Global Access of Secondary GASS Grid access of data in remote secondary storage

Storage

Grid File Transfer GridFTP Inter-node fast file transfer

23. Define Globus Resource Allocation Manager
Globus Resource Allocation Manager (GRAM) provides resource allocation, process creation,
monitoring, and management services. GRAM implementations map requests expressed in a resource
specification language (RSL) into commands to local schedulers and computers.
24. Define Monitoring and Discovery Service
The Monitoring and Discovery Service (MDS) is an extensible grid information service that combines

data discovery mechanisms with the LDAP (LDAP defines a data model, query language, and other
related protocols). MDS provides a uniform framework for providing and accessing system configuration

and status information such as computer server configuration, network status, or the locations of
replicated datasets.

Part- B

1. Explain in detail about Grid Middleware Packages
We first introduce some grid standards and popular APIs. Then we present the desired software
support and middleware developed for grid computing.
Grid Standards and APIs
The Open Grid Forum (formally Global Grid Forum) and Object Management Group are two

well-formed organizations behind those standards. we have also reported some grid standards
including the GLUE for resource representation, SAGA (Simple API for Grid Applications), GSI

(Grid Security Infrastructure), OGSI (Open Grid Service Infrastructure), and WSRE (Web
Service Resource Framework).
Software Support and Middleware
Grid middleware is specifically designed a layer between hardware and the software. The
middleware products enable the sharing of heterogeneous resources and managing virtual
organizations created around the grid. Middleware glues the allocated resources with specific

user applications. Popular grid middleware tools include the Globus Toolkits (USA), gLight,
UNICORE (German), BOINC (Berkeley), CGSP (China), Condor-G, and Sun Grid Engine, etc.

Package Description

BOINC Berkeley Open Infrastructure for Network Computing.

UNICORE Middleware developed by the German grid computing community

Globus (GT4) A middleware library jointly developed by Argonne National Lab.

CGSP in ChinaGrid The CGSP (ChinaGrid Support Platform) is a middleware library
 developed by 20 top universities in China as part of the ChinaGrid

 Project

Condor-G Originally developed at the Univ. of Wisconsin for general
 distributed computing, and later extended to Condor-G for grid job

 management.

Sun Grid Engine (SGE) Developed by Sun Microsystems for business grid applications.
 Applied to private grids and local clusters within enterprises or

 campuses.

2. The Globus Toolkit Architecture
GT4 is an open middleware library forthe grid computing communities. These open source

software libraries support many operational grids and their applications on an international basis.

The toolkit addresses common problems and issues related to grid resource discovery,

management, communication, security, fault detection, and portability. The software itself

provides a variety of components and capabilities. The library includes a rich set of service

implementations.

The GT4 Library
GT4 offers the middle-level core services in grid applications. The high-level services and tools,

such as MPI, Condor-G, and Nirod/G, are developed by third parties for general-purpose

distributed computing applications. The local services, such as LSF, TCP, Linux, and Condor,
are at the bottom level and are fundamental tools supplied by other developers.

 Service Functionality Module Name Functional Description

 Global Resource GRAM Grid Resource Access and Management

 Allocation Manager (HTTP-based)

 Communication Nexus Unicast and multicast communication

 Grid Security GSI Authentication and related security services

 Infrastructure

 Monitory and Discovery MDS Distributed access to structure and state

 Service information

 Health and Status HBM Heartbeat monitoring of system components

 Global Access of GASS Grid access of data in remote secondary

 Secondary Storage storage

 Grid File Transfer GridFTP Inter-node fast file transfer

Globus Job Workflow
A typical job execution sequence proceeds as follows: The user delegates his credentials to a

delegation service. The user submits a job request to GRAM with the delegation identifier as a

parameter. GRAM parses the request, retrieves the user proxy certificate from the delegation

service, and then acts on behalf of the user. GRAM sends a transfer request to the RFT (Reliable

File Transfer), which applies GridFTP to bring in the necessary files. GRAM invokes a local

scheduler via a GRAM adapter and the SEG (Scheduler Event Generator) initiates a set of user

jobs. The local scheduler reports the job state to the SEG. Once the job is complete, GRAM uses

RFT and GridFTP to stage out the resultant files. The grid monitors the progress of these

operations and sends the user a notification when they succeed, fail, or are delayed.

Client-Globus Interactions
GT4 service programs are designed to support user applications. There are strong interactions

between provider programs and user code. GT4 makes heavy use of industry-standard web

service protocols and mechanisms in service description, discovery, access, authentication,

authorization, and the like. GT4 makes extensive use of Java, C, and Python to write user code.

Web service mechanisms define specific interfaces for grid computing. Web services provide

flexible, extensible, and widely adopted XML-based interfaces.

3. Explain the MapReduce technique
MapReduce is a programming model and an associated implementation for processing and

generating large data sets with a parallel, distributed algorithm on a cluster. A MapReduce

program is composed of a Map() procedure that performs filtering and sorting (such as sorting

students by first name into queues, one queue for each name) and a Reduce() procedure that

performs a summary operation (such as counting the number of students in each queue, yielding

name frequencies). The "MapReduce System" (also called "infrastructure" or "framework")

orchestrates the processing by marshalling the distributed servers, running the various tasks in

parallel, managing all communications and data transfers between the various parts of the

system, and providing for redundancy and fault tolerance.

http://en.wikipedia.org/wiki/Programming_model
http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Cluster_%28computing%29
http://en.wikipedia.org/wiki/Map_%28parallel_pattern%29
http://en.wikipedia.org/wiki/Map_%28parallel_pattern%29
http://en.wikipedia.org/wiki/Marshalling_%28computer_science%29
http://en.wikipedia.org/wiki/Redundancy_%28engineering%29
http://en.wikipedia.org/wiki/Fault-tolerant_computer_system

The model is inspired by the map and reduce functions commonly used in functional

programming, although their purpose in the MapReduce framework is not the same as in their

original forms. The key contributions of the MapReduce framework are not the actual map and

reduce functions, but the scalability and fault-tolerance achieved for a variety of applications by

optimizing the execution engine once. As such, a single-threaded implementation of MapReduce

(such as MongoDB) will usually not be faster than a traditional (non-MapReduce)

implementation, any gains are usually only seen with multi-threaded implementations. Only

when the optimized distributed shuffle operation (which reduces network communication cost)

and fault tolerance features of the MapReduce framework come into play, is the use of this

model beneficial. Optimizing the communication cost is essential to a good MapReduce

algorithm.
MapReduce libraries have been written in many programming languages, with different

levels of optimization. A popular open-source implementation that has support for distributed

shuffles is part of Apache Hadoop. The name MapReduce originally referred to the proprietary
Google technology, but has since been genericized.
Hadoop is an open-source framework for writing and running distributed applications that

process very large data sets. There has been a great deal of interest in the framework, and it is

very popular in industry as well as in academia. Hadoop cases include: web indexing, scientific

simulation, social network analysis, fraud analysis, recommendation engine, ad targeting, threat

analysis, risk modeling and other. Hadoop is core part of a cloud computing infrastructure and is

being used by companies like Yahoo, Facebook, IBM, LinkedIn, and Twitter. The main benefits

of Hadoop framework can be summarized as follows:
Accessible: it runs on clusters of commodity servers Scalable: it scales linearly to handle larger

data by adding nodes to the cluster

Fault-tolerant: it is designed with the assumption of frequent hardware failures

Simple: it allows user to quickly write efficiently parallel code

Global: it stores and analyzes data in its native format
Hadoop is designed for data-intensive processing tasks and for that reason it has adopted

a move- code-to-data" philosophy. According to that philosophy, the programs to run, which are

small in size, Are transferred to nodes that store the data. In that way, the framework achieves

better performance and resource utilization. In addition, Hadoop solves the hard scaling

problems caused by large amounts of complex data. As the amount of data in a cluster grows,

new servers can be incrementally and inexpensively added to store and analyze it.
Hadoop has two major subsystems: the Hadoop Distributed File System (HDFS) and a

distributed data processing framework called MapReduce. Apart from these two main
components, Hadoop has grown into a complex ecosystem, including a range of software

systems. Core related applications that are built on top of the HDFS are presented in figure and a
short description per project is given in table.
MapReduce is a framework for processing parallelizable problems across huge datasets using a

large number of computers (nodes), collectively referred to as a cluster (if all nodes are on the

same local network and use similar hardware) or a grid (if the nodes are shared across

geographically and administratively distributed systems, and use more heterogenous hardware).

Processing can occur on data stored either in a filesystem (unstructured) or in a database

(structured). MapReduce can take advantage of locality of data, processing it on or near the

storage assets in order to reduce the distance over which it must be transmitted.
 "Map" step: Each worker node applies the "map()" function to the local data, and writes the

output to a temporary storage. A master node orchestrates that for redundant copies of input
data, only one is processed.

 "Shuffle" step: Worker nodes redistribute data based on the output keys (produced by the

"map()" function), such that all data belonging to one key is located on the same worker
node.

 "Reduce" step: Worker nodes now process each group of output data, per key, in parallel.

http://en.wikipedia.org/wiki/Map_%28higher-order_function%29
http://en.wikipedia.org/wiki/Fold_%28higher-order_function%29
http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Single-threaded
http://en.wikipedia.org/wiki/MongoDB
http://en.wikipedia.org/wiki/Multi-threaded
http://en.wikipedia.org/wiki/Library_%28software%29
http://en.wikipedia.org/wiki/Open-source_software
http://en.wikipedia.org/wiki/Apache_Hadoop
http://en.wikipedia.org/wiki/Google
http://en.wikipedia.org/wiki/Generic_trademark
http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Computer_cluster
http://en.wikipedia.org/wiki/Grid_Computing
http://en.wikipedia.org/wiki/Filesystem
http://en.wikipedia.org/wiki/Database

4. Explain the architecture of MapReduce in Hadoop?
The Hadoop MapReduce MRv1 framework is based on a centralized master/slave architecture.

The architecture utilizes a single master server (JobTracker) and several slave servers

(TaskTracker's). Please see Appendix A for a discussion on the MapReduce MRv2 framework.

The JobTracker represents a centralized program that keeps track of the slave nodes, and

provides an interface infrastructure for job submission. The TaskTracker executes on each of the

slave nodes where the actual data is normally stored. In other words, the JobTracker reflects the

interaction point among the users and the Hadoop framework. Users submit MapReduce jobs to

the JobTracker, which inserts the jobs into the pending jobs queue and executes them (normally)

on a FIFO basis (it has to be pointed out that other job schedulers are available - see Hadoop

Schedulers below). The JobTracker manages the map and reduce task assignments with the

TaskTracker's. The TaskTracker's execute the jobs based on the instructions from the JobTracker

and handle the data movement between the maps and reduce phases, respectively. Any

map/reduce construct basically reflects a special form of a Directed Acyclic Graph (DAG). A

DAG can execute anywhere in parallel, as long as one entity is not an ancestor of another entity.

In other words, parallelism is achieved when there are no hidden dependencies among shared

states. In the MapReduce model, the internal organization is based on the map function that

transforms a piece of data into entities of [key, value] pairs. Each of these elements is sorted (via

their key) and ultimately reaches the same cluster node where a reduce function is used to merge

the values (with the same key) into a single result (see code below). The Map/Reduce DAG is

organized as depicted in Figure.

The Hadoop MapReduce framework is based on a pull model, where multiple TaskTracker's

communicate with the JobTracker requesting tasks (either map or reduce tasks). After an initial

setup phase, the JobTracker is informed about a job submission. The JobTracker provides a job

ID to the client program, and starts allocating map tasks to idle TaskTracker's requesting work

items (see below Figure). Each TaskTracker contains a defined number of task slots based on the

capacity potential of the system. Via the heartbeat protocol, the JobTracker knows the number of

free slots in the TaskTracker (the TaskTracker's send heartbeat messages indicating the free slots
- true for the FIFO scheduler). Hence, the JobTracker can determine the appropriate job setup for

a TaskTracker based on the actual availability behavior. The assigned TaskTracker will fork a

MapTask to execute the map processing cycle (the MapReduce framework spawns 1 MapTask

for each InputSplit generated by the InputFormat). In other words, the MapTask extracts the

input data from the splits by using the RecordReader and InputFormat for the job, and it invokes

the user provided map function, which emits a number of [key, value] pairs in the memory

buffer.
After the MapTask finished executing all input records, the commit process cycle is initiated by

flushing the memory buffer to the index and data file pair. The next step consists of merging all

the index and data file pairs into a single construct that is (once again) being divided up into local

directories. As some map tasks are completed, the JobTracker starts initiating the reduce tasks

phase. The TaskTracker's involved in this step download the completed files from the map task

nodes, and basically concatenate the files into a single entity. As more map tasks are being

completed, the JobTracker notifies the involved TaskTracker's, requesting the download of the

additional region files and to merge the files with the previous target file. Based on this design,

the process of downloading the region files is interleaved with the on-going map task procedures.

Eventually, all the map tasks will be completed, at which point the JobTracker notifies

the involved TaskTracker's to proceed with the reduce phase. Each TaskTracker will fork a

ReduceTask (separate JVM's are used), read the downloaded file (that is already sorted by key),

and invoke the reduce function that assembles the key and aggregated value structure into the

final output file (there is one file per reducer node). Each reduce task (or map task) is single

threaded, and this thread invokes the reduce [key, values] function in either ascending or

descending order. The output of each reducer task is written to a temp file in HDFS. When the

reducer finishes processing all keys, the temp file is atomically renamed into its final destination

file name.
As the MapReduce library is designed to process vast amounts of data by potentially

utilizing hundreds or thousands of nodes, the library has to be able to gracefully handle any

failure scenarios. The TaskTracker nodes periodically report their status to the JobTracker that

oversees the overall job progress. In scenarios where the JobTracker has not been contacted by a

TaskTracker for a certain amount of time, the JobTracker assumes a TaskTracker node failure

and hence, reassigns the tasks to other available TaskTracker nodes. As the results of the map

phase are stored locally, the data will no longer be available if a TaskTracker node goes offline.

In such a scenario, all the map tasks from the failed node (regardless of the actual completion

percentage) will have to be reassigned to a different TaskTracker node that will re-execute all the

newly assigned splits. The results of the reduce phase are stored in HDFS and hence, the data is

globally available even if a TaskTracker node goes offline. Hence, in a scenario where during the

reduce phase a TaskTracker node goes offline, only the set of incomplete reduce tasks have to be

reassigned to a different TaskTracker node for re-execution.
5. Explain the dataflow and control flow of MapReduce

MapReduce is the heart of Hadoop. It is a programming model designed for processing
large volumes of data in parallel by dividing the work into a set of independent tasks.

The framework possesses the feature of data locality. Data locality means movement of
algorithm to the data instead of data to algorithm. When the processing is done on the data

algorithm is moved across the DataNodes rather than data to the algorithm. The architecture is so
constructed because Moving Computation is Cheaper than Moving Data.

It is fault tolerant which is achieved by its daemons using the concept of replication.The
daemons associated with the MapReduce phase are job-tracker and task-trackers.

Map-Reduce jobs are submitted on job-tracker. The JobTracker pushes work out to

available TaskTracker nodes in the cluster, striving to keep the work as close to the data as

possible. A heartbeat is sent from the TaskTracker to the JobTracker every few minutes to check

its status whether the node is dead or alive. Whenever there is negative status, the job tracker

assigns the task to another node on the replicated data of the failed node stored in this node.

Let’s see how the data flows:
MapReduce has a simple model of data processing: inputs and outputs for the map and

reduce functions are key-value pairs. The map and reduce functions in Hadoop MapReduce have
the following general form:
map: (K1, V1) → list(K2, V2)

reduce: (K2, list(V2)) → list(K3, V3)
Now before processing it needs to know on which data to process, this is achieved with

the InputFormat class. InputFormat is the class which selects file from HDFS that should be
input to the map function. An InputFormat is also responsible for creating theinput splits and

dividing them into records. The data is divided into number of splits (typically 64/128mb) in
HDFS. An input split is a chunk of the input that is processed by a single map.

InputFormat class calls the getSplits() function and computes splits for each file and then

sends them to the jobtracker, which uses their storage locations to schedule map tasks to process

them on the tasktrackers. On a tasktracker, the map task passes the split to the

createRecordReader() method on InputFormat to obtain a RecordReader for that split. The

RecordReader loads data from its source and converts into key-value pairs suitable for reading

by mapper. The default InputFormat is TextInputFormat which treats each value of input a new

value and the associated key is byte offset.

A RecordReader is little more than an iterator over records, and the map task uses one to
generate record key-value pairs, which it passes to the map function. We can see this by looking
at the Mapper’s run() method:
public void run(Context context) throws IOException, InterruptedException
{ setup(context);
while (context.nextKeyValue()) {

map(context.getCurrentKey(), context.getCurrentValue(), context);

}

cleanup(context);

}

After running setup(), the nextKeyValue() is called repeatedly on the Context, (which

delegates to the identically-named method on the the RecordReader) to populate the key and
value objects for the mapper. The key and value are retrieved from the Record Reader by way of

the Context, and passed to the map() method for it to do its work. Input to the map function
which is the key-value pair (K, V) gets processed as per the logic mentioned in the map code.

When the reader gets to the end of the stream, the nextKeyValue() method returns false,
and the map task runs its cleanup() method.

The output of the mapper is sent to the partitioner. Partitioner controls the partitioning of

the keys of the intermediate map-outputs. The key (or a subset of the key) is used to derive the
partition, typically by a hash function. The total number of partitions is the same as the number

of reduce tasks for the job. Hence this controls which of the m reduce tasks the intermediate key
(and hence the record) is sent for reduction. The use of partitioners is optional.
6. Describe in detail about dataflow of file read in HDFS
To get an idea of how data flows between the client interacting with HDFS, the namenode
and the datanode, consider the below diagram, which shows the main sequence of events
when reading a file.

The client opens the file it wishes to read by calling open() on the FileSystem object, which for

HDFS is an instance of DistributedFileSystem (step 1). DistributedFileSystem calls the

namenode, using RPC, to determine the locations of the blocks for the first few blocks in the file

(step 2). For each block, the namenode returns the addresses of the datanodes that have a copy of

that block. Furthermore, the datanodes are sorted according to their proximity to the client. If the

client is itself a datanode (in the case of a MapReduce task, for instance), then it will read from

the local datanode.
The DistributedFileSystem returns a FSDataInputStream to the client for it to read data

from. FSDataInputStream in turn wraps a DFSInputStream, which manages the datanode and

namenode I/O. The client then calls read() on the stream (step 3). DFSInputStream, which has

stored the datanode addresses for the first few blocks in the file, then connects to the first

(closest) datanode for the first block in the file. Data is streamed from the datanode back to the

client, which calls read() repeatedly on the stream (step 4). When the end of the block is reached,

DFSInputStream will close the connection to the datanode, then find the best datanode for the

next block (step 5). This happens transparently to the client, which from its point of view is just

reading a continuous stream. Blocks are read in order with the DFSInputStream opening new

connections to datanodes as the client reads through the stream. It will also call the namenode to

retrieve the datanode locations for the next batch of blocks as needed. When the client has

finished reading, it calls close() on the FSDataInputStream (step 6).
One important aspect of this design is that the client contacts datanodes directly to

retrieve data, and is guided by the namenode to the best datanode for each block. This design

allows HDFS to scale to large number of concurrent clients, since the data traffic is spread across

all the datanodes in the cluster. The namenode meanwhile merely has to service block location

requests (which it stores in memory, making them very efficient), and does not, for example,

serve data, which would quickly become a bottleneck as the number of clients grew.

7. Describe in detail about dataflow of file write in HDFS
The case we’re going to consider is the case of creating a new file, writing data to it, then
closing the file

.

The client creates the file by calling create() on DistributedFileSystem (step 1).

DistributedFileSystem makes an RPC call to the namenode to create a new file in the

filesystem’s namespace, with no blocks associated with it (step 2). The namenode performs

various checks to make sure the file doesn’t already exist, and that the client has the right

permissions to create the file. If these checks pass, the namenode makes a record of the new file;

otherwise, file creation fails and the client is thrown an IOException. The DistributedFileSystem

returns a SDataOutputStream for the client to start writing data to. Just as in the read case,

FSDataOutputStream wraps a DFSOutputStream, which handles communication with the

datanodes and namenode.

As the client writes data (step 3), DFSOutputStream splits it into packets, which it writes

to an internal queue, called the data queue. The data queue is consumed by the DataStreamer,

whose responsibility it is to ask the namenode to allocate new blocks by picking a list of suitable

datanodes to store the replicas. The list of datanodes forms a pipeline—we’ll assume the

replication level is 3, so there are three nodes in the pipeline. The DataStreamer streams the

packets to the first datanode in the pipeline, which stores the packet and forwards it to the second

datanode in the pipeline. Similarly, the second datanode stores the packet and forwards it to the

third (and last) datanode in the pipeline (step 4). DFSOutputStream also maintains an internal

queue of packets that are waiting to be acknowledged by datanodes, called the ack queue. A

packet is removed from the ack queue only when it has been acknowledged by all the datanodes

in the pipeline (step 5).
If a datanode fails while data is being written to it, then the following actions are taken,

which are transparent to the client writing the data. First the pipeline is closed, and any packets

in the ack queue are added to the front of the data queue so that datanodes that are downstream

from the failed node will not miss any packets. The current block on the good datanodes is given

a new identity, which is communicated to the namenode, so that the partial block on the failed

datanode will be deleted if the failed datanode recovers later on. The failed datanode is removed

from the pipeline and the remainder of the block’s data is written to the two good datanodes in

the pipeline. The namenode notices that the block is under-replicated, and it arranges for a

further replica to be created on another node. Subsequent blocks are then treated as normal.
When the client has finished writing data it calls close() on the stream (step 6). This

action flushes all the remaining packets to the datanode pipeline and waits for acknowledgments
before contacting the namenode to signal that the file is complete (step7). The namenode already

knows which blocks the file is made up of (via Data Streamer asking for block allocations), so it
only has to wait for blocks to be minimally replicated before returning successfully.
8. Explain Reading Data from a Hadoop URL and Deleting Data

The Hadoop’s FileSystem class: the API for interacting with one of Hadoop’s

filesystems. While we focus mainly on the HDFS implementation, DistributedFileSystem, in
general you should strive to write your code against the FileSystem abstract class, to retain

portability across filesystems. This is very useful when testing your program.
One of the simplest ways to read a file from a Hadoop filesystem is by using a

java.net.URL object to open a stream to read the data from. The general idiom is:
try {

in = new URL("hdfs://host/path").openStream();
// process in } finally {

IOUtils.closeStream(in);

}
There’s a little bit more work required to make Java recognize Hadoop’s hdfs URL

scheme. This is achieved by calling the setURLStreamHandlerFactory method on URL with an

instance of FsUrlStreamHandlerFactory. This method can only be called once per JVM, so it is

typically executed in a static block. This limitation means that if some other part of your program

perhaps a third-party component outside your control sets RLStreamHandlerFactory, you won’t

be able to use this approach for reading data from Hadoop. The next section discusses an

alternative. A program for displaying files from Hadoop filesystems on standard output, like the

Unix cat command.
We make use of the handy IOUtils class that comes with Hadoop for closing the stream in the
finally clause, and also for copying bytes between the input stream and the output stream

(System.out in this case). The last two arguments to the copyBytes method are the buffer size
used for copying, and whether to close the streams when the copy is complete. We close the

input stream ourselves, and System.out doesn’t need to be closed.

Deleting Data
Use the delete() method on FileSystem to permanently remove files or directories: public
boolean delete(Path f, boolean recursive) throws IOException. If f is a file or an empty directory,

then the value of recursive is ignored. A nonempty directory is only deleted, along with its
contents, if recursive is true (otherwise an IOException is thrown).
9.(a). File pattern in HDFS
It is a common requirement to process sets of files in a single operation. For example, a

MapReduce job for log processing might analyze a month worth of files, contained in a number

of directories. Rather than having to enumerate each file and directory to specify the input, it is

convenient to use wildcard characters to match multiple files with a single expression, an

operation that is known as globbing. Hadoop provides two FileSystem methods for processing

globs:
public FileStatus[] globStatus(Path pathPattern) throws IOException

public FileStatus[] globStatus(Path pathPattern, PathFilter filter) throws IOException
The globStatus() methods returns an array of FileStatus objects whose paths match the supplied
pattern, sorted by path. An optional PathFilter can be specified to restrict the matches further.

Hadoop supports the same set of glob characters as Unix bash.
Imagine that logfiles are stored in a directory structure organized hierarchically by date.

So, for example, logfiles for the last day of 2007 would go in a directory named /2007/12/31.

Suppose that the full file listing is:

/2007/12/30

/2007/12/31

/2008/01/01

/2008/01/02

9. (b) Pathfilter
Glob patterns are not always powerful enough to describe a set of files you want to

access. For example, it is not generally possible to exclude a particular file using a glob pattern.
The listStatus() and globStatus() methods of FileSystem take an optional PathFilter, which

allows programmatic control over matching:
package org.apache.hadoop.fs;

public interface PathFilter

{

boolean accept(Path path);

}
PathFilter is the equivalent of java.io.FileFilter for Path objects rather than File

objects.

The filter passes only files that don’t match the regular expression. We use the filter in
conjunction with a glob that picks out an initial set of files to include: the filter is used to refine

the results. For example:
fs.globStatus(new Path("/2007/*/*"), new RegexExcludeFilter("^.*/2007/12/31$"))

Will expand to /2007/12/30. Filters can only act on a file’s name, as represented by a

Path. They can’t use a file’s properties, such as creation time, as the basis of the filter.

Nevertheless, they can perform matching that neither glob patterns nor regular expressions can
achieve.
10. Explain in detail about command line interface in HDFS

There are many other interfaces to HDFS, but the command line is one of the simplest,

and to many developers the most familiar. We are going to run HDFS on one machine, so first

follow the instructions for setting up Hadoop in pseudo-distributed mode.Later you’ll see how to
run on a cluster of machines to give us scalability and fault tolerance.

There are two properties that we set in the pseudo-distributed configuration that deserve

further explanation. The first is fs.default.name, set to hdfs://localhost/, which is used to set a

default filesystem for Hadoop. Filesystems are specified by a URI, and here we have used a hdfs

URI to configure Hadoop to use HDFS by default. The HDFS daemons will use this property to

determine the host and port for the HDFS namenode. We’ll be running it on localhost, on the

default HDFS port, 8020. And HDFS clients will use this property to work out where the

namenode is running so they can connect to it.
We set the second property, dfs.replication, to one so that HDFS doesn’t replicate

filesystem blocks by the usual default of three. When running with a single datanode, HDFS

can’t replicate blocks to three datanodes, so it would perpetually warn about blocks being under-
replicated. This setting solves that problem.
Basic Filesystem Operations
The filesystem is ready to be used, and we can do all of the usual filesystem operations such as

reading files, creating directories, moving files, deleting data, and listing directories. You can

type hadoop fs -help to get detailed help on every command. Start by copying a file from the
local filesystem to HDFS:
% hadoop fs -copyFromLocal input/docs/quangle.txt hdfs://localhost/user/tom/quangle.txt

This command invokes Hadoop’s filesystem shell command fs, which supports a number
of subcommands—in this case, we are running -copyFromLocal. The local file quangle.txt is

copied to the file /user/tom/quangle.txt on the HDFS instance running on localhost. In fact, we
could have omitted the scheme and host of the URI and picked up the default, hdfs://localhost, as

specified in core-site.xml.

% hadoop fs -copyFromLocal input/docs/quangle.txt /user/tom/quangle.txt

We could also have used a relative path, and copied the file to our home directory in HDFS,
which in this case is /user/tom:
% hadoop fs -copyFromLocal input/docs/quangle.txt quangle.txt
Let’s copy the file back to the local filesystem and check whether it’s the same:

% hadoop fs -copyToLocal quangle.txt quangle.copy.txt

% md5 input/docs/quangle.txt quangle.copy.txt
MD5 (input/docs/quangle.txt) = a16f231da6b05e2ba7a339320e7dacd9
MD5 (quangle.copy.txt) = a16f231da6b05e2ba7a339320e7dacd9
The MD5 digests are the same, showing that the file survived its trip to HDFS and is

back intact.
Finally, let’s look at an HDFS file listing. We create a directory first just to see how it is
displayed in the listing:

% hadoop fs -mkdir books

% hadoop fs -ls .
Found 2 items

drwxr-xr-x - tom supergroup 0 2009-04-02 22:41 /user/tom/books

-rw-r--r-- 1 tom supergroup 118 2009-04-02 22:29 /user/tom/quangle.txt

The information returned is very similar to the Unix command ls -l, with a few minor

differences. The first column shows the file mode. The second column is the replication factor of

the file (something a traditional Unix filesystems does not have). Remember we set the default

replication factor in the site-wide configuration to be 1, which is why we see the same value

here. The entry in this column is empty for directories since the concept of replication does not

apply to them—directories are treated as metadata and stored by the namenode, not the

datanodes. The third and fourth columns show the file owner and group. The fifth column is the

size of the file in bytes, or zero for directories. The six and seventh columns are the last modified

date and time. Finally, the eighth column is the absolute name of the file or directory.

Unit – 5 - Security

Part – A

1. What are the challenges of grid sites
 The first challenge is integration with existing systems and technologies.

 The second challenge is interoperability with different hosting environments.

 The third challenge is to construct trust relationships among interacting hosting environments.

2. Define Reputation-Based Trust Model
In a reputation-based model, jobs are sent to a resource site only when the site is trustworthy to meet
users’ demands. The site trustworthiness is usually calculated from the following information: the defense
capability, direct reputation, and recommendation trust.
3. Define direct reputation
Direct reputation is based on experiences of prior jobs previously submitted to the site. The reputation is
measured by many factors such as prior job execution success rate, cumulative site utilization, job
turnaround time, job slowdown ratio, and so on. A positive experience associated with a site will improve

its reputation. On the contrary, a negative experience with a site will decrease its reputation.
4. What are the major authentication methods in the grid?
The major authentication methods in the grid include passwords, PKI, and Kerberos. The password is the
simplest method to identify users, but the most vulnerable one to use. The PKI is the most popular
method supported by GSI.

5. List the types of authority in grid
The authority can be classified into three categories: attribute authorities, policy authorities, and identity
authorities. Attribute authorities issue attribute assertions; policy authorities issue authorization policies;
identity authorities issue certificates. The authorization server makes the final authorization decision.
6. Define grid security infrastructure
The Grid Security Infrastructure (GSI), formerly called the Globus Security Infrastructure, is a
specification for secret, tamper-proof, delegatable communication between software in a grid computing
environment. Secure, authenticatable communication is enabled using asymmetric encryption.
7. What are the functions present in GSI
GSI may be thought of as being composed of four distinct functions: message protection, authentication,
delegation, and authorization.
8. List the protection mechanisms in GSI
GSI allows three additional protection mechanisms. The first is integrity protection, by which a receiver

can verify that messages were not altered in transit from the sender. The second is encryption, by which
messages can be protected to provide confidentiality. The third is replay prevention, by which a receiver

can verify that it has not.
9. What is the primary information of GSI
GSI authentication, a certificate includes four primary pieces of information: (1) a subject name, which
identifies the person or object that the certificate represents; (2) the public key belonging to the subject;
(3) the identity of a CA that has signed the certificate to certify that the public key and the identity both
belong to the subject; and (4) the digital signature of the named CA.
10. Define blue pill
The blue pill is malware that executes as a hypervisor to gain control of computer resources.
The hypervisor installs without requiring a restart and the computer functions normally, without

degradation of speed or services, which makes detection difficult.
11. What are the host security threats in public IaaS

• Stealing keys used to access and manage hosts (e.g., SSH private keys)

• Attacking unpatched, vulnerable services listening on standard ports (e.g., FTP, SSH)

• Hijacking accounts that are not properly secured (i.e., no passwords for standard accounts)

• Attacking systems that are not properly secured by host firewalls
• Deploying Trojans embedded in the software component in the VM or within the VM image (the

OS) itself
12. List the Public Cloud Security Limitations
 There are limitations to the public cloud when it comes to support for custom security features.

Security requirements such as an application firewall, SSL accelerator, cryptography, or rights
management using a device that supports PKCS 12 are not supported in a public SaaS, PaaS, or IaaS
cloud.

 Any mitigation controls that require deploymentof an appliance or locally attached peripheral devices
in the public IaaS/PaaS cloud are not feasible.

13. Define Data lineage
Data lineage is defined as a data life cycle that includes the data's origins and where it moves over time. It
describes what happens to data as it goes through diverse processes. It helps provide visibility into the
analytics pipeline and simplifies tracing errors back to their sources.
14. Define Data remanence
Data remanence is the residual representation of data that has been in some way nominally erased or
removed.
15. What are the IAM processes operational activities.

 Provisioning

 Credential and attribute management

 Entitlement management

 Compliance management

 Identity federation management

16. What are the functions of Cloud identity administrative
Cloud identity administrative functions should focus on life cycle management of user identities in the
cloud—provisioning, deprovisioning, identity federation, SSO, password or credentials management,

profile management, and administrative management. Organizations that are not capable of supporting
federation should explore cloud-based identity management services.
17. List the factors to manage the IaaS virtual infrastructure in the cloud

 Availability of a CSP network, host, storage, and support application infrastructure.

 Availability of your virtual servers and the attached storage (persistent and ephemeral) for compute
services

 Availability of virtual storage that your users and virtual server depend on for storage Service

 Availability of your network connectivity to the Internet or virtual network connectivity to IaaS services.

 Availability of network services

18. What is meant by the terms data-in-transit
It is the process of the transfer of the data between all of the versions of the original file, especially when
data may be in transit on the Internet. It is data that is exiting the network via email, web, or other Internet
protocols.
19. List the IAM process business category

 User management
 Authentication management

 Authorization management

 Access management

 Data management and provisioning

 Monitoring and auditing
20. What are the key components of IAM automation process?

 User Management, New Users

 User Management, User Modifications

Authentication Management

 Authorization Management

Part – B

1. Trust Models for Grid Security
A user job demands the resource site to provide security assurance by issuing a security demand

(SD). On the other hand, the site needs to reveal its trustworthiness, called its trust index (TI).

These two parameters must satisfy a security-assurance condition: TI ≥ SD during the job

mapping process. When determining its security demand, users usually care about some typical

attributes. These attributes and their values are dynamically changing and depend heavily on the

trust model, security policy, accumulated reputation, self-defense capability, attack history, and

site vulnerability.
Three challenges are outlined below to establish the trust among grid sites

The first challenge is integration with existing systems and technologies. The resources

sites in a grid are usually heterogeneous and autonomous. It is unrealistic to expect that a single

type of security can be compatible with and adopted by every hosting environment. At the same

time, existing security infrastructure on the sites cannot be replaced overnight. Thus, to be

successful, grid security architecture needs to step up to the challenge of integrating with existing

security architecture and models across platforms and hosting environments.
The second challenge is interoperability with different ―hosting environments.‖ Services

are often invoked across multiple domains, and need to be able to interact with one another. The

interoperation is demanded at the protocol, policy, and identity levels. For all these levels,

interoperation must be protected securely. The third challenge is to construct trust relationships

among interacting hosting environments. Grid service requests can be handled by combining

resources on multiple security domains. Trust relationships are required by these domains during

the end-to-end traversals. A service needs to be open to friendly and interested entities so that

they can submit requests and access securely.
The grid aims to construct a large-scale network computing system by integrating

distributed, heterogeneous, and autonomous resources. The security challenges faced by the grid

are much greater than other computing systems. Before any effective sharing and cooperation

occurs, a trust relationship has to be established among participants. A Generalized Trust Model

At the bottom, we identify three major factors which influence the trustworthiness of a
resource site. An inference module is required to aggregate these factors. Followings are some
existing inference or aggregation methods. An intra-site fuzzy inference procedure is called to

assess defense capability and direct reputation. Defense capability is decided by the firewall,

intrusion detection system (IDS), intrusion response capability, and anti-virus capacity of the

individual resource site. Direct reputation is decided based on the job success rate, site

utilization, job turnaround time, and job slowdown ratio measured. Recommended trust is also

known as secondary trust and is obtained indirectly over the grid network. Reputation-Based

Trust Model
In a reputation-based model, jobs are sent to a resource site only when the site is

trustworthy to meet users’ demands. The site trustworthiness is usually calculated from the

following information: the defense capability, direct reputation, and recommendation trust. The

defense capability refers to the site’s ability to protect itself from danger. It is assessed according

to such factors as intrusion detection, firewall, response capabilities, anti-virus capacity, and so

on. Direct reputation is based on experiences of prior jobs previously submitted to the site. The

reputation is measured by many factors such as prior job execution success rate, cumulative site

utilization, job turnaround time, job slowdown ratio, and so on. A positive experience associated

with a site will improve its reputation. On the contrary, a negative experience with a site will

decrease its reputation.
A Fuzzy-Trust Model

The job security demand (SD) is supplied by the user programs. The trust index (TI) of a

resource site is aggregated through the fuzzy-logic inference process over all related parameters.
Specifically, one can use a two-level fuzzy logic to estimate the aggregation of numerous trust

parameters and security attributes into scalar quantities that are easy to use in the job scheduling
and resource mapping process. The TI is normalized as a single real number with 0 representing

the condition with the highest risk at a site and 1 representing the condition which is totally risk-

free or fully trusted. The fuzzy inference is accomplished through four steps: fuzzification,

inference, aggregation, and defuzzification. The second salient feature of the trust model is that if

a site’s trust index cannot match the job security demand (i.e., SD > TI), the trust model could

deduce detailed security features to guide the site security upgrade as a result of tuning the fuzzy

system.

2. Authentication and Authorization Methods
The major authentication methods in the grid include passwords, PKI, and Kerberos. The

password is the simplest method to identify users, but the most vulnerable one to use. The PKI is

the most popular method supported by GSI. To implement PKI, we use a trusted third party,

called the certificate authority (CA). Each user applies a unique pair of public and private keys.

The public keys are issued by the CA by issuing a certificate, after recognizing a legitimate user.

The private key is exclusive for each user to use, and is unknown to any other users. A digital

certificate in IEEE X.509 format consists of the user name, user public key, CA name, and a

secrete signature of the user. The following example illustrates the use of a PKI service in a grid

environment.
Authorization for Access Control
The authorization is a process to exercise access control of shared resources. Decisions can be

made either at the access point of service or at a centralized place. Typically, the resource is a
host that provides processors and storage for services deployed on it. Based on a set predefined

policies or rules, the resource may enforce access for local services. The central authority is a

special entity which is capable of issuing and revoking polices of access rights granted to remote
accesses. The authority can be classified into three categories: attribute authorities, policy

authorities, and identity authorities. Attribute authorities issue attribute assertions; policy
authorities issue authorization policies; identity authorities issue certificates. The authorization

server makes the final authorization decision.
Three Authorization Models
Three authorization models are shown in diagram. The subject is the user and the resource refers

to the machine side. The subject-push model is shown at the top diagram. The user conducts

handshake with the authority first and then with the resource site in a sequence. The resource-

pulling model puts the resource in the middle. The user checks the resource first. Then the

resource contacts its authority to verify the request, and the authority authorizes at step 3. Finally

the resource accepts or rejects the request from the subject at step 4. The authorization agent

model puts the authority in the middle. The subject check with the authority at step 1 and the

authority makes decisions on the access of the requested resources. The authorization process is

complete at steps 3 and 4 in the reverse direction.

3. Explain in detail about Grid Security Infrastructure
GSI is a portion of the Globus Toolkit and provides fundamental security services needed

to support grids, including supporting for message protection, authentication and delegation, and

authorization. GSI enables secure authentication and communication over an open network, and

permits mutual authentication across and among distributed sites with single sign-on capability.

No centrally managed security system is required, and the grid maintains the integrity of its

members’ local policies. GSI supports both message-level security, which supports the WS-

Security standard and the WS-Secure Conversation specification to provide message protection

for SOAP messages, and transport-level security, which means authentication via TLS with

support for X.509 proxy certificates.
GSI Functional Layers
GT4 provides distinct WS and pre-WS authentication and authorization capabilities. Both build

on the same base, namely the X.509 standard and entity certificates and proxy certificates, which

are used to identify persistent entities such as users and servers and to support the temporary

delegation of privileges to other entities, respectively. As shown in diagram, GSI may be thought

of as being composed of four distinct functions: message protection, authentication, delegation,

and authorization.

Transport-Level Security
Transport-level security entails SOAP messages conveyed over a network connection

protected by TLS. TLS provides for both integrity protection and privacy (via encryption).

Transport-level security is normally used in conjunction with X.509 credentials for

authentication, but can also be used without such credentials to provide message protection

without authentication, often referred to as ―anonymous transport-level security.‖ In this mode

of operation, authentication may be done by username and password in a SOAP message
GSI also provides message-level security for message protection for SOAP messages by

implementing the WS-Security standard and the WS-Secure Conversation specification. The

WS-Security standard from OASIS defines a framework for applying security to individual

SOAP messages; WS-Secure Conversation is a proposed standard from IBM and Microsoft that

allows for an initial exchange of messages to establish a security context which can then be used

to protect subsequent messages in a manner that requires less computational overhead (i.e., it

allows the trade-off of initial overhead for setting up the session for lower overhead for

messages).
GSI conforms to this standard. GSI uses these mechanisms to provide security on a per-

message basis, that is, to an individual message without any preexisting context between the

sender and receiver (outside of sharing some set of trust roots). GSI, as described further in the

subsequent section on authentication, allows for both X.509 public key credentials and the

combination of username and password for authentication; however, differences still exist. With

username/password, only the WS-Security standard can be used to allow for authentication; that

is, a receiver can verify the identity of the communication initiator.
GSI allows three additional protection mechanisms. The first is integrity protection, by

which a receiver can verify that messages were not altered in transit from the sender. The second

is encryption, by which messages can be protected to provide confidentiality. The third is replay

prevention, by which a receiver can verify that it has not received the same message previously.

These protections are provided between WS-Security and WS-Secure Conversation. The former

applies the keys associated with the sender and receiver’s X.509 credentials. The X.509

credentials are used to establish a session key that is used to provide the message protection.
Authentication and Delegation

GSI has traditionally supported authentication and delegation through the use of X.509
certificates and public keys. As a new feature in GT4, GSI also supports authentication through

plain usernames and passwords as a deployment option. We discuss both methods in this section.
GSI uses X.509 certificates to identify persistent users and services.

As a central concept in GSI authentication, a certificate includes four primary pieces of

information: (1) a subject name, which identifies the person or object that the certificate

represents; (2) the public key belonging to the subject; (3) the identity of a CA that has signed

the certificate to certify that the public key and the identity both belong to the subject; and (4) the

digital signature of the named CA. X.509 provides each entity with a unique identifier (i.e., a

distinguished name) and a method to assert that identifier to another party through the use of an

asymmetric key pair bound to the identifier by the certificate.
Trust Delegation

To reduce or even avoid the number of times the user must enter his passphrase when

several grids are used or have agents (local or remote) requesting services on behalf of a user,

GSI provides a delegation capability and a delegation service that provides an interface to allow

clients to delegate (and renew) X.509 proxy certificates to a service. The interface to this service

is based on the WS-Trust specification. A proxy consists of a new certificate and a private key.

The key pair that is used for the proxy, that is, the public key embedded in the certificate and the

private key, may either be regenerated for each proxy or be obtained by other means. The new

certificate contains the owner’s identity, modified slightly to indicate that it is a proxy. The new

certificate is signed by the owner, rather than a CA

4. Explain cloud infrastructure security at application level
We will limit our discussion to web application security: web applications in the cloud accessed
by users with standard Internet browsers, such as Firefox, Internet Explorer, or Safari, from any
computer connected to the Internet.
Application-Level Security Threats

The existing threats exploit well-known application vulnerabilities including cross-site

scripting (XSS), SQL injection, malicious file execution, and other vulnerabilities resulting from
programming errors and design flaws. Armed with knowledge and tools, hackers are constantly

scanning web applications (accessible from the Internet) for application vulnerabilities.
It has been a common practice to use a combination of perimeter security controls and

network- and host-based access controls to protect web applications deployed in a tightly

controlled environment, including corporate intranets and private clouds, from external hackers.
Web applications built and deployed in a public cloud platform will be subjected to a

high threat level, attacked, and potentially exploited by hackers to support fraudulent and illegal

activities. In that threat model, web applications deployed in a public cloud (the SPI model) must

be designed for an Internet threat model, and security must be embedded into the Software

Development Life Cycle (SDLC)

DoS and EDoS
Additionally, you should be cognizant of application-level DoS and EDDoS attacks that

can potentially disrupt cloud services for an extended time. These attacks typically originate
from compromised computer systems attached to the Internet.

Application-level DoS attacks could manifest themselves as high-volume web page

reloads, XML* web services requests (over HTTP or HTTPS), or protocol-specific requests
supported by a cloud service. Since these malicious requests blend with the legitimate traffic, it

is extremely difficult to selectively filter the malicious traffic without impacting the service as a
whole

DoS attacks on pay-as-you-go cloud applications will result in a dramatic increase in

your cloud utility bill: you’ll see increased use of network bandwidth, CPU, and storage
consumption. This type of attack is also being characterized as economic denial of sustainability

(EDoS)
End User Security

A customer of a cloud service, are responsible for end user security tasks—security

procedures to protect your Internet-connected PC—and for practicing ―safe surfing.‖ Protection
measures include use of security software, such as anti-malware, antivirus, personal firewalls,

security patches, and IPS-type software on your Internet-connected computer.
The new mantra of ―the browser is your operating system‖ appropriately conveys the

message that browsers have become the ubiquitous ―operating systems‖ for consuming cloud

services. All Internet browsers routinely suffer from software vulnerabilities that make them

vulnerable to end user security attacks. Hence, our recommendation is that cloud customers take

appropriate steps to protect browsers from attacks. To achieve end-to-end security in a cloud, it

is essential for customers to maintain good browser hygiene. The means keeping the browser

(e.g., Internet Explorer, Firefox, Safari) patched and updated to mitigate threats related to
browser vulnerabilities.

Currently, although browser security add-ons are not commercially available, users are
encouraged to frequently check their browser vendor’s website for security updates, use the auto-
update feature, and install patches on a timely basis to maintain end user security.
SaaS Application Security

The SaaS model dictates that the provider manages the entire suite of applications
delivered to users. Therefore, SaaS providers are largely responsible for securing the applications

and components they offer to customers. Customers are usually responsible for operational

security functions, including user and access management as supported by the provider.
Extra attention needs to be paid to the authentication and access control features offered

by SaaS CSPs. Usually that is the only security control available to manage risk to information.

Most services, including those from Salesforce.com and Google, offer a web-based

administration user interface tool to manage authentication and access control of the application.
Cloud customers should try to understand cloud-specific access control mechanisms—

including support for strong authentication and privilege management based on user roles and

functions—and take the steps necessary to protect information hosted in the cloud. Additional

controls should be implemented to manage privileged access to the SaaS administration tool, and

enforce segregation of duties to protect the application from insider threats. In line with security

standard practices, customers should implement a strong password policy—one that forces users

to choose strong passwords when authenticating to an application.
PaaS Application Security
PaaS vendors broadly fall into the following two major categories:

• Software vendors (e.g., Bungee, Etelos, GigaSpaces, Eucalyptus)

• CSPs (e.g., Google App Engine, Salesforce.com’s Force.com, Microsoft Azure, Intuit

QuickBase)
A PaaS cloud (public or private) offers an integrated environment to design, develop, test,

deploy, and support custom applications developed in the language the platform supports.
PaaS application security encompasses two software layers:

• Security of the PaaS platform itself (i.e., runtime engine)

• Security of customer applications deployed on a PaaS platform
PaaS CSPs (e.g., Google, Microsoft, and Force.com) are responsible for securing the platform

software stack that includes the runtime engine that runs the customer applications. Since PaaS

applications may use third-party applications, components, or web services, the third-party

application provider may be responsible for securing their services. Hence, customers should

understand the dependency of their application on all services and assess risks pertaining to

third-party service providers.
IaaS Application Security

IaaS cloud providers (e.g., Amazon EC2, GoGrid, and Joyent) treat the applications on
customer virtual instances as a black box, and therefore are completely agnostic to the operations
and management of the customer’s applications.

The entire stack—customer applications, runtime application platform (Java, .NET, PHP,

Ruby on Rails, etc.), and so on— runs on the customer’s virtual servers and is deployed and
managed by customers. To that end, customers have full responsibility for securing their

applications deployed in the IaaS cloud.
Web applications deployed in a public cloud must be designed for an Internet threat

model, embedded with standard security countermeasures against common web vulnerabilities.

In adherence with common security development practices, they should also be periodically

tested for vulnerabilities, and most importantly, security should be embedded into the SDLC.

Customers are solely responsible for keeping their applications and runtime platform patched to

protect the system from malware and hackers scanning for vulnerabilities to gain unauthorized

access to their data in the cloud. It is highly recommended that you design and implement

applications with a ―least-privileged‖ runtime model

Developers writing applications for IaaS clouds must implement their own features to handle

authentication and authorization. In line with enterprise identity management practices, cloud

applications should be designed to leverage delegated authentication service features supported

by an enterprise Identity Provider (e.g., OpenSSO, Oracle IAM, IBM, CA) or third-party identity

service provider (e.g., Ping Identity, Symplified, TriCipher). Any custom implementations of

Authentication, Authorization, and Accounting (AAA) features can become a weak link if they

are not properly implemented, and you should avoid them when possible.
5. Describe in detail about provider data and its security

Customers should also be concerned about what data the provider collects and how the
CSP protects that data. Additionally, your provider collects and must protect a huge amount of
security-related data.
Storage
For data stored in the cloud (i.e., storage-as-a-service), we are referring to IaaS and not data
associated with an application running in the cloud on PaaS or SaaS. The same three information

security concerns are associated with this data stored in the cloud (e.g., Amazon’s S3) as with
data stored elsewhere: confidentiality, integrity, and availability.
Confidentiality
When it comes to the confidentiality of data stored in a public cloud, you have two potential
concerns. First, what access control exists to protect the data? Access control consists of both
authentication and authorization.

CSPs generally use weak authentication mechanisms (e.g., username + password), and

the authorization (―access‖) controls available to users tend to be quite coarse and not very

granular. For large organizations, this coarse authorization presents significant security concerns

unto itself. Often, the only authorization levels cloud vendors provide are administrator

authorization (i.e., the owner of the account itself) and user authorization (i.e., all other

authorized users)—with no levels in between (e.g., business unit administrators, who are

authorized to approve access for their own business unit personnel).
If a CSP does encrypt a customer’s data, the next consideration concerns what encryption

algorithm it uses. Not all encryption algorithms are created equal. Cryptographically, many

algorithms provide insufficient security. Only algorithms that have been publicly vetted by a
formal standards body (e.g., NIST) or at least informally by the cryptographic community should

be used. Any algorithm that is proprietary should absolutely be avoided.
Symmetric encryption involves the use of a single secret key for both the encryption and

decryption of data. Only symmetric encryption has the speed and computational efficiency to

handle encryption of large volumes of data. It would be highly unusual to use an asymmetric

algorithm for this encryption use case.
Although the example in diagram is related to email, the same concept (i.e., a single

shared, secret key) is used in data storage encryption.

Although the example in diagram is related to email, the same concept (i.e., a public key
and a private key) is not used in data storage encryption.

Integrity
Confidentiality does not imply integrity; data can be encrypted for confidentiality purposes, and

yet you might not have a way to verify the integrity of that data. Encryption alone is sufficient

for confidentiality, but integrity also requires the use of message authentication codes (MACs).

The simplest way to use MACs on encrypted data is to use a block symmetric algorithm (as

opposed to a streaming symmetric algorithm) in cipher block chaining (CBC) mode, and to

include a one-way hash function.
Another aspect of data integrity is important, especially with bulk storage using IaaS.

Once a customer has several gigabytes (or more) of its data up in the cloud for storage, how does

the customer check on the integrity of the data stored there? There are IaaS transfer costs

associated with moving data into and back down from the cloud,* as well as network utilization

(bandwidth) considerations for the customer’s own network. What a customer really wants to do

is to validate the integrity of its data while that data remains in the cloud—without having to

download and reupload that data.
Availability

Assuming that a customer’s data has maintained its confidentiality and integrity, you

must also be concerned about the availability of your data. There are currently three major
threats in this regard—none of which are new to computing, but all of which take on increased

importance in cloud computing because of increased risk.
The first threat to availability is network-based attacks

The second threat to availability is the CSP’s own availability.
Cloud storage customers must be certain to ascertain just what services their provider is

actually offering. Cloud storage does not mean the stored data is actually backed up. Some cloud
storage providers do back up customer data, in addition to providing storage. However, many

cloud storage providers do not back up customer data, or do so only as an additional service for
an additional cost.

All three of these considerations (confidentiality, integrity, and availability) should be

encapsulated in a CSP’s service-level agreement (SLA) to its customers. However, at this time,

CSP SLAs are extremely weak—in fact, for all practical purposes, they are essentially worthless.

Even where a CSP appears to have at least a partially sufficient SLA, how that SLA actually gets

measured is problematic. For all of these reasons, data security considerations and how data is

actually stored in the cloud should merit considerable attention by customers.
6. Explain identity and access management functional architecture
We’ll present the basic concepts and definitions of IAM functions for any service:
Authentication
Authentication is the process of verifying the identity of a user or system. Authentication usually

connotes a more robust form of identification. In some use cases, such as service-to-service
interaction, authentication involves verifying the network service requesting access to

information served by another service.

Authorization
Authorization is the process of determining the privileges the user or system is entitled to once
the identity is established. —in other words, authorization is the process of enforcing policies.
Auditing
In the context of IAM, auditing entails the process of review and examination of authentication,

authorization records, and activities to determine the adequacy of IAM system controls, to verify
compliance with established security policies and procedures (e.g., separation of duties), to

detect breaches in security services (e.g., privilege escalation), and to recommend any changes

that are indicated for countermeasures.
IAM Architecture
Standard enterprise IAM architecture encompasses several layers of technology, services, and

processes. At the core of the deployment architecture is a directory service (such as LDAP or

Active Directory) that acts as a repository for the identity, credential, and user attributes of the

organization’s user pool. The directory interacts with IAM technology components such as

authentication, user management, provisioning, and federation services that support the standard

IAM practice and processes within the organization. It is not uncommon for organizations to use

several directories that were deployed for environment-specific reasons (e.g., Windows systems

using Active Directory, Unix systems using LDAP) or that were integrated into the environment

by way of business mergers and acquisitions.
The IAM processes to support the business can be broadly categorized as follows:
User management
Activities for the effective governance and management of identity life cycles
Authentication management
Activities for the effective governance and management of the process for determining that an
entity is who or what it claims to be
Authorization management
Activities for the effective governance and management of the process for determining
entitlement rights that decide what resources an entity is permitted to access in accordance with

the organization’s policies.
Access management
Enforcement of policies for access control in response to a request from an entity (user, services)
wanting to access an IT resource within the organization
Data management and provisioning
Propagation of identity and data for authorization to IT resources via automated or manual
processes
Monitoring and auditing
Monitoring, auditing, and reporting compliance by users regarding access to resources within the
organization based on the defined policies.
IAM processes support the following operational activities:

Provisioning
This is the process of on-boarding users to systems and applications. These processes

provide users with necessary access to data and technology resources. The term typically is used
in reference to enterprise-level resource management.
Credential and attribute management
These processes are designed to manage the life cycle of credentials and user attributes— create,

issue, manage, revoke—to minimize the business risk associated with identity impersonation and

inappropriate account use. Credentials are usually bound to an individual and are verified during

the authentication process. The processes include provisioning of attributes, static (e.g., standard

text password) and dynamic (e.g., one-time password) credentials that comply with a password

standard (e.g., passwords resistant to dictionary attacks), handling password expiration,

encryption management of credentials during transit and at rest, and access policies of user

attributes

Entitlement management
Entitlements are also referred to as authorization policies. The processes in this domain address
the provisioning and deprovisioning of privileges needed for the user to access resources
including systems, applications, and databases.
Compliance management
This process implies that access rights and privileges are monitored and tracked to ensure the
security of an enterprise’s resources. The process also helps auditors verify compliance to

various internal access control policies, and standards that include practices such as segregation
of duties, access monitoring, periodic auditing, and reporting.
Identity federation management
Federation is the process of managing the trust relationships established beyond the internal
network boundaries or administrative domain boundaries among distinct organizations. A

federation is an association of organizations that come together to exchange information about
their users and resources to enable collaborations and transactions
Centralization of authentication (authN) and authorization (authZ)
A central authentication and authorization infrastructure alleviates the need for application

developers to build custom authentication and authorization features into their applications.
Furthermore, it promotes a loose coupling architecture where applications become agnostic to

the authentication methods and policies. This approach is also called an ―externalization of

authN and authZ‖ from applications.

7. Explain user management functions in the cloud
User management functions in the cloud can be categorized as follows:

1. Cloud identity administration

2. Federation or SSO

3. Authorization management

4. Compliance management

Cloud Identity Administration
Cloud identity administrative functions should focus on life cycle management of user

identities in the cloud—provisioning, deprovisioning, identity federation, SSO, password or
credentials management, profile management, and administrative management. Organizations

that are not capable of supporting federation should explore cloud-based identity management

services.
By federating identities using either an internal Internet-facing IdP or a cloud identity

management service provider, organizations can avoid duplicating identities and attributes and

storing them with the CSP. Given the inconsistent and sparse support for identity standards

among CSPs, customers may have to devise custom methods to address user management

functions in the cloud. Provisioning users when federation is not supported can be complex and

laborious.
Federated Identity (SSO)
Organizations planning to implement identity federation that enables SSO for users can take one
of the following two paths (architectures):

1. Implement an enterprise IdP within an organization perimeter.

2. Integrate with a trusted cloud-based identity management service provider.
Enterprise identity provider

In this architecture, cloud services will delegate authentication to an organization’s IdP.

In this delegated authentication architecture, the organization federates identities within a trusted

circle of CSP domains. A circle of trust can be created with all the domains that are authorized to

delegate authentication to the IdP. In this deployment architecture, where the organization will

provide and support an IdP, greater control can be exercised over user identities, attributes,

credentials, and policies for authenticating and authorizing users to a cloud service.

Identity management-as-a-service
In this architecture, cloud services can delegate authentication to an identity

management-as-a- service (IDaaS) provider. In this model, organizations outsource the federated

identity management technology and user management processes to a third-party service

provider. In essence, this is a SaaS model for identity management, where the SaaS IdP stores

identities in a ―trusted identity store‖ and acts as a proxy for the organization’s users accessing

cloud services.
The identity store in the cloud is kept in sync with the corporate directory through a

provider proprietary scheme (e.g., agents running on the customer’s premises synchronizing a

subset of an organization’s identity store to the identity store in the cloud using SSL VPNs).

Once the IdP is established in the cloud, the organization should work with the CSP to delegate

authentication to the cloud identity service provider. The cloud IdP will authenticate the cloud

users prior to them accessing any cloud services

Cloud Authorization Management
Most cloud services support at least dual roles (privileges): administrator and end user. It

is a normal practice among CSPs to provision the administrator role with administrative

privileges. These privileges allow administrators to provision and deprovision identities, basic

attribute profiles, and, in some cases, to set access control policies such as password strength and

trusted networks from which connections are accepted.
As we mentioned earlier, XACML is the preferred standard for expressing and enforcing

authorization and user authentication policies. As of this writing, we are not aware of any cloud
services supporting XACML to express authorization policies for users.
IAM Support for Compliance Management

As much as cloud IAM architecture and practices impact the efficiency of internal IT

processes, they also play a major role in managing compliance within the enterprise. Properly
implemented IAM practices and processes can help improve the effectiveness of the controls

identified by compliance frameworks.
IAM practices and processes offer a centralized view of business operations and an

automated process that can stop insider threats before they occur. However, given the sparse

support for IAM standards such as SAML (federation), SPML (provisioning), and XACML

(authorization) by the CSP, you should assess the CSP capabilities on a case-by-case basis and

institute processes for managing compliance related to identity (including attribute) and access

management.
8. (a) PaaS Availability management

In a typical PaaS service, customers (developers) build and deploy PaaS applications on

top of the CSP-supplied PaaS platform. The PaaS platform is typically built on a CSP owned and

managed network, servers, operating systems, storage infrastructure, and application components

(web services). Given that the customer PaaS applications are assembled with CSP-supplied

application components and, in some cases, third-party web services components (mash-up

applications), availability management of the PaaS application can be complicated
PaaS applications may rely on other third-party web services components that are not part

of the PaaS service offerings; hence, understanding the dependency of your application on third-

party services, including services supplied by the PaaS vendor, is essential. PaaS providers may

also offer a set of web services, including a message queue service, identity and authentication

service, and database service, and your application may depend on the availability of those

service components.
App Engine resource is measured against one of two kinds of quotas: a billable quota or a

fixed quota.
Billable quotas are resource maximums set by you, the application’s administrator, to prevent

the cost of the application from exceeding your budget. Every application gets an amount of each

billable quota for free. You can increase billable quotas for your application by enabling billing,

setting a daily budget, and then allocating the budget to the quotas. You will be charged only for

the resources your app actually uses, and only for the amount of resources used above the free

quota thresholds.

Fixed quotas are resource maximums set by the App Engine to ensure the integrity of the

system. These resources describe the boundaries of the architecture, and all applications are

expected to run within the same limits. They ensure that another app that is consuming too many
resources will not affect the performance of your app.
Customer Responsibility
The PaaS application customer should carefully analyze the dependencies of the application on
the third-party web services (components) and outline a holistic management strategy to manage
and monitor all the dependencies.
PaaS platform service levels
Customers should carefully review the terms and conditions of the CSP’s SLAs and understand
the availability constraints.
Third-party web services provider service levels
When your PaaS application depends on a third-party service, it is critical to understand the SLA
of that service.
PaaS Health Monitoring
The following options are available to customers to monitor the health of their service:

 Service health dashboard published by the CSP

 CSP customer mailing list that notifies customers of occurring and recently occurred outages
 RSS feed for RSS readers with availability and outage information
 Internal or third-party-based service monitoring tools that periodically check your PaaS

application, as well as third-party web services that monitor your application
8. (b) IaaS Availability management
Availability considerations for the IaaS delivery model should include both a computing and
storage (persistent and ephemeral) infrastructure in the cloud. IaaS providers may also offer other

services such as account management, a message queue service, an identity and authentication
service, a database service, a billing service, and monitoring services. Managing your IaaS

virtual infrastructure in the cloud depends on five factors:
 Availability of a CSP network, host, storage, and support application infrastructure. This factor

depends on the following:

1. CSP data center architecture, including a geographically diverse and fault-tolerance
architecture.

2. Reliability, diversity, and redundancy of Internet connectivity used by the customer
and the CSP.

3. Reliability and redundancy architecture of the hardware and software components
used for delivering compute and storage services.

4. Availability management process and procedures, including business continuity
processes established by the CSP.

 Availability of your virtual servers and the attached storage (persistent and ephemeral) for compute
services

 Availability of virtual storage that your users and virtual server depend on for storage
service. This includes both synchronous and asynchronous storage access use cases.
Synchronous storage access use cases demand low data access latency and continuous
availability, whereas asynchronous use cases are more tolerant to latency and availability.

 Availability of your network connectivity to the Internet or virtual network connectivity to
IaaS services. In some cases, this can involve virtual private network (VPN) connectivity
between your internal private data center and the public IaaS cloud

 Availability of network services, including a DNS, routing services, and authentication services
required to connect to the IaaS service.

IaaS Health Monitoring

 Service health dashboard published by the CSP.

 CSP customer mailing list that notifies customers of occurring and recently occurred outages.

 Web console or API that publishes the current health status of your virtual servers and network.

9. (a) What Are the Key Privacy Concerns in the Cloud?
These concerns typically mix security and privacy. Here are some additional considerations to be
aware of:
Access
Data subjects have a right to know what personal information is held and, in some cases, can

make a request to stop processing it. This is especially important with regard to marketing

activities; in some jurisdictions, marketing activities are subject to additional regulations and are

almost always addressed in the end user privacy policy for applicable organizations. In the cloud,

the main concern is the organization’s ability to provide the individual with access to all personal

information, and to comply with stated requests.
Compliance
What are the privacy compliance requirements in the cloud? What are the applicable laws,
regulations, standards, and contractual commitments that govern this information, and who is

responsible for maintaining the compliance? How are existing privacy compliance requirements
impacted by the move to the cloud? Clouds can cross multiple jurisdictions;
Storage
Where is the data in the cloud stored? Was it transferred to another data center in another

country? Is it commingled with information from other organizations that use the same CSP?

Privacy laws in various countries place limitations on the ability of organizations to transfer

some types of personal information to other countries. When the data is stored in the cloud, such

a transfer may occur without the knowledge of the organization, resulting in a potential violation

of the local law.
Retention
How long is personal information (that is transferred to the cloud) retained? Which retention
policy governs the data? Does the organization own the data, or the CSP? Who enforces the

retention policy in the cloud, and how are exceptions to this policy (such as litigation holds)
managed?
Destruction
How does the cloud provider destroy PII at the end of the retention period? How do

organizations ensure that their PII is destroyed by the CSP at the right point and is not available

to other cloud users? How do they know that the CSP didn’t retain additional copies? Cloud

storage providers usually replicate the data across multiple systems and sites—increased

availability is one of the benefits they provide. This benefit turns into a challenge when the

organization tries to destroy the data—can you truly destroy information once it is in the cloud?

Did the CSP really destroy the data, or just make it inaccessible to the organization? Is the CSP

keeping the information longer than necessary so that it can mine the data for its own use?
Audit and monitoring
How can organizations monitor their CSP and provide assurance to relevant stakeholders that
privacy requirements are met when their PII is in the cloud?
Privacy breaches
How do you know that a breach has occurred, how do you ensure that the CSP notifies you when

a breach occurs, and who is responsible for managing the breach notification process (and costs

associated with the process)? If contracts include liability for breaches resulting from negligence
of the CSP, how is the contract enforced and how is it determined who is at fault?
9. (b). SaaS Availability Management
SaaS service providers are responsible for business continuity, application, and infrastructure

security management processes. This means the tasks your IT organization once handled will

now be handled by the CSP. Some mature organizations that are aligned with industry standards,
such as ITIL, will be faced with new challenges of governance of SaaS services as they try to

map internal service-level categories to a CSP.

Customer Responsibility
Customers should understand the SLA and communication methods (e.g., email, RSS feed,

website URL with outage information) to stay informed on service outages. When possible,

customers should use automated tools such as Nagios or Siteuptime.com to verify the availability

of the SaaS service. As of this writing, customers of a SaaS service have a limited number of

options to support availability management. Hence, customers should seek to understand the

availability management factors, including the SLA of the service, and clarify with the CSP any

gaps in SLA exclusions and service credits when disruptions occur.
SaaS Health Monitoring
The following options are available to customers to stay informed on the health of their service:

 Service health dashboard published by the CSP. Usually SaaS providers, such as
Salesforce.com, publish the current state of the service, current outages that may impact
customers, and upcoming scheduled maintenance services on their website

 The Cloud Computing Incidents Database (CCID).

 Customer mailing list that notifies customers of occurring and recently occurred outages.
 Internal or third-party-based service monitoring tools that periodically check SaaS provider

health and alert customers when service becomes unavailable
 RSS feed hosted at the SaaS service provider.
10. Explain cloud infrastructure security at network level
Although your organization’s IT architecture may change with the implementation of a private

cloud, your current network topology will probably not change significantly. If you have a

private extranet in place (e.g., for premium customers or strategic partners), for practical

purposes you probably have the network topology for a private cloud in place already. The

security considerations you have today apply to a private cloud infrastructure, too. And the

security tools you have in place (or should have in place) are also necessary for a private cloud

and operate in the same way.

If you choose to use public cloud services, changing security requirements will require
changes to your network topology. You must address how your existing network topology

interacts with your cloud provider’s network topology. There are four significant risk factors in
this use case:

• Ensuring the confidentiality and integrity of your organization’s data-in-transit to and from
your public cloud provider

• Ensuring proper access control (authentication, authorization, and auditing) to whatever
resources you are using at your public cloud provider

• Ensuring the availability of the Internet-facing resources in a public cloud that are being
used by your organization, or have been assigned to your organization by your public cloud
providers

• Replacing the established model of network zones and tiers with domains
Ensuring Data Confidentiality and Integrity
Some resources and data previously confined to a private network are now exposed to the
Internet, and to a shared public network belonging to a third-party cloud provider. Although use

of HTTPS (instead of HTTP) would have mitigated the integrity risk, users not using HTTPS
(but using HTTP) did face an increased risk that their data could have been altered in transit
without their knowledge.
Ensuring Proper Access Control

Since some subset of these resources (or maybe even all of them) is now exposed to the

Internet, an organization using a public cloud faces a significant increase in risk to its data. The

ability to audit the operations of your cloud provider’s network (let alone to conduct any realtime

monitoring, such as on your own network), even after the fact, is probably non-existent. You will

have decreased access to relevant network-level logs and data, and a limited ability to thoroughly

conduct investigations and gather forensic data.
However, the issue of ―non-aged‖ IP addresses and unauthorized network access to

resources does not apply only to routable IP addresses (i.e., resources intended to be reachable

directly from the Internet). The issue also applies to cloud providers’ internal networks for
customer use and the assignment of non-routable IP addresses.
Ensuring the Availability of Internet-Facing Resources

There are deliberate attacks as well. Although prefix hijacking due to deliberate attacks is

far less common than misconfigurations, it still occurs and can block access to data. According

to the same study presented to NANOG, attacks occur fewer than 100 times per month. Although

prefix hijackings are not new, that attack figure will certainly rise, and probably significantly,

along with a rise in cloud computing.
DNS attacks are another example of problems associated with this third risk factor. In

fact, there are several forms of DNS attacks to worry about with regard to cloud computing.
Although DNS attacks are not new and are not directly related to the use of cloud computing, the

issue with DNS and cloud computing is an increase in an organization’s risk at the network level
because of increased external DNS querying.

