DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF

ELECTRICAL AND ELECTRONICS ENGINEERING

QUESTION BANK

III SEMESTER

EE8351 - DIGITAL LOGIC CIRCUITS

Regulation – 2017

Academic Year 2018-2019

OUESTION BANK

SUBJECT : DIGITAL LOGIC CIRCUITS

SEM / YEAR: III/II

	UNIT I - <u>NUMBER SYSTEMS AND DIGITAL LOGIC FAMILIES</u>						
	Review of number systems, binary codes, error detection (Parity and Hamming code) –Digital Logic Families- com TTL, ECL and MOS families-operation, characteristics of	and correct parison of l digital logic	ction codes RTL, DTL, family.				
	PART – A						
Q.No	Questions	BT	Competence				
1.	Convert (a) (475.25) ₈ to its decimal equivalent (b) (549.B4) ₁₆ to its binary equivalent	BTL1	Remember				
2.	Define propagation delay.	BTL 1	Remember				
3.	Determine $(377)_{10}$ in Octal and Hexa-Decimal equivalent.	BTL 2	Understand				
4.	Compare the totem-pole output with open-collector output?	BTL 4	Analyze				
5.	Give examples for weighted codes.	BTL 1	Remember				
6.	What is meant by non-weighted codes?	BTL 1	Remember				
7.	Convert 143 ₁₆ into its binary and binary coded decimal equivalent.	BTL 1	Remember				
8.	Convert 115 ₁₀ and 235 ₁₀ to hexadecimal numbers.	BTL 2	Understand				
9.	List the factors used for measuring the performance of digital logic families.	BTL 2	Understand				
10.	What is grey code and mention its advantages.	BTL 1	Remember				
11.	Briefly explain the stream lined method of converting binary to decimal number with example.	BTL 5	Evaluate				
12.	Give the Gray code for the binary number $(111)_2$	BTL 3	Apply				
13.	When can RTL be used to represent digital systems?	BTL 3	Apply				
14.	State the important characteristics of TTL family	BTL 3	Apply				
15.	Convert (a) 1001001110101101 ₂ (b) 10010001011.00101110 ₂ to hexadecimal.	BTL 4	Analyze				
16.	Summarize the advantages of ECL as compared to TTL logic family.	BTL 2	Understand				
17.	Classify the basic families that belong to the bipolar families and to the MOS families.	BTL 5	Evaluatee				

18.	Which is faster TTL or ECL? Which requires more power to operate?		BTL 6	Create
19.	Define noise margin.		BTL 1	Remember
20.	Convert the following Excess 3 numbers into decimal numbers. (a)1011 (b)1001 0011 0111		BTL 6	Create
	PART – B			
1	(i)Perform the following addition using BCD and Excess-3 addition (205+569)	(7)	BTL 3	Apply
1.	(ii) Encode the binary word 1011 into seven bit even parity hamming code	(6)	BTL 6	Create
2	(i) With circuit schematic, explain the operation of a two port TTL NAND gate with totem-pole output.	(8)	BTL 4	Analyze
2.	(ii)Compare totem pole and open collector outputs.	(5)	BTL 4	
3	(i)Explain hamming code with an example. State its advantage over parity codes.	(7)	BTL 5	Evaluate
5.	(ii) Design a TTL logic circuit for a 3 input NAND gate.	(6)	BTL 5	
4.	Discuss about TTL parameters.	(13)	BTL 2	Understand
5.	With neat sketch explain the circuit diagram of CMOS NOR gate.	(13)	BTL 1	Remember
6.	Name and explain the characteristics of TTL family.	(13)	BTL 1	Remember
7.	Explain the characteristics and implementation of the following digital logic families.(a) CMOS (b) ECL (c) TTL	(4) (6) (3)	BTL 4	Analyze
8.	(i)Explain the classifications of binary codes. (ii)Explain about error detection and correction codes	(7) (6)	BTL 5 BTL 5	Evaluate Evaluate
9.	(i)Assume that the even parity hamming code is 0110011 is transmitted and that 0100011 is received. The receiver does not know what is transmitted. Determine the bit location where error has occurred using received code.(ii)Draw the MOS logic circuit for NOT gate and explain its	(7)	BTL 1	Remember
	operation.	(6)	BTL 1	Remember
10.	Write short notes on following: (a)RTL (b) DTL (c) TTL and (d) ECL	(13)	BTL 4	Analyze
11.	Explain in detail about error detection and error correcting codes.	(13)	BTL 3	Apply
12.	With neat sketch explain the operation of MOS family.	(13)	BTL 2	Understand

	(i) Perform the following addition using BCD and Excess-3 addition (502+965)	(7)	BTL 3	Apply
13.	(ii) Encode the binary word 1001 into seven bit even parity hamming code	(6)	BTL 6	Create
14.	 (i)Design a odd parity hamming code generator and detector for 4-bit data and explain their logic. (ii) Convert FACE₁₆ into its binary, octal, and decimal equivalent. 	(7) (6)	BTL 2	Understand
	PART – C		1	1
1.	(i) Explain in detail the usage of hamming codes for error detection and error correction with an example considering the data bits as 0101	(12)	BTL 4	Analyze
	(ii) Convert 23.625 ₁₀ to octal(base 8)	(3)		
	(i) Using 16's complement method design the subtraction	(8)	BTL 5	Evaluate
2	procedure and find C14 ₁₆ from $69B_{16}$			
2.	(ii) Using 2's complement method design the subtraction procedure and find 110001 from 100101	(7)	BTL 5	
3.	 (i) Explain with an aid of circuit diagram the operation of 2 input CMOS NAND gate and list out its advantages over other logic families. (ii) Given the 2 binary numbers X=1010100 and Y=1000011 perform the subtraction Y-X by using 2's complements 	(12) (3)	BTL 5	Evaluate
	Design a CMOS inverter and explain its operation. Comment			
4	on its characteristics such as Fan-in, Fan-out power			
т.	dissipation, propagation delay and noise margin. Compare its			
	advantages over other logic families.	(15)	BTL 4	Analyse

	UNIT II - <u>COMBINATIONAL CIRCUITS</u>				
	Combinational logic- representation of logic functions- SOP and POS forms, K- map representations- minimization using K maps- simplification and implementation of combinational logic- multiplexers and de multiplexers- code converters, adders, subtractors, Encoders and Decoders.				
	PART – A				
Q.No	Questions	BT	Competence		
1.	Convert the given expression in canonical SOP form Y=A'C+AB+BC'	BTL 4	Remember		
2.	Simplify the expression Z=AB'+AB.(A'C')'	BTL 3	Apply		
3.	Given F=B'+A'B+A'C' : Identify the redundant term using K- map	BTL 4	Analyze		
4.	Simplify : xy+x'z+yz	BTL 3	Apply		
5.	Judge that (a) $a+a'b=a+b$; (b) $x'y'z+x'yz+xy'=x'z+xy'$	BTL 6	Create		

6.	Write the POS form of the SOP expression $f(x,y,z) = x'yz + xyz' + xy'z$	BTL 6	Create
7	Draw the circuit of the function $F=\sum(0,6)$ with NAND	BTL 4	Analyze
7.	gates		
8.	How does don't care condition in K-map help for circuit	BTL 5	Evaluate
	simplification:		
9.	What are the basic digital logic gates?	BTL 1	Remember
10.	What is a Logic gate?	BTL 1	Remember
11	Define combinational logic	BTL 1	Remember
11.			
10	What is a karnaugh map? Interpret the limitations of karnaugh	BTL 2	Understand
12.	map.		
13	Construct OR gate using only NAND gates	BTL 3	Apply
13.	Construct of gate using only fill (D gates)		
14.	What is meant by priority encoder?	BTL 2	Understand
15.	Draw the logic diagram of a half adder.	BTL 1	Remember
16.	Draw the truth table of 2:1 MUX	BTL 5	Evaluate
17.	Define multiplexer.	BTL 1	Kemember
10	What is the difference between decoder and demultipleyer?	BTL 2	Understand
18.	what is the uniference between decoder and demultiplexer?		Chaerstallu
19	Why is MUX called as data selector?	BTL 2	Understand
17.			

20.	Design a half subtractor.		BTL 1	Remember			
	PART – B						
	(i) Explain briefly about SOP and POS forms with	(7)	BTL 6	Create			
1.	example. (ii) Plot the logical expression $ABCD + AB'C'D' + AB'C + AB$ on a 4 variable K-map. Obtain the simplified	(6)	BTL 3	Apply			
	expression from the map.						
	(i)Reduce the following function using K-map	(7)	BTL 1	Remember			
	$f(A,B,C,D) = \Pi M(0,2,3,8,9,12,13,15)$						
2.	(ii) Minimize the function $F(a,b,c,d) = \sum (0,4,6,8,9,10,12)$ with $d = \sum (2,13)$. Implement the function using only NOR gates.	(6)	BTL 4	Analyze			
3.	With the use of Maps, Find the simplest form in SOP of the function F=f.g, where f and g are given by f = wxy'+y'z+w'yz'+x'yz' g= (w+x+y'+z')(x'+y'+z)(w'+y+z')	(13)	BTL 2	Understand			
	(i) Prove that $F = A$, $B + A$, P , is evolutive OP expection and	(7)	В ТТ 1	Remember			
4.	it equals = (((A.B)'.A)'.((A.B)'.B)')' (ii) Prove that for constructing XOR from NANDs we need four NAND GATES	(6)	BTL 1	Remember			

	(i) State and prove De-Morgan's theorem	(4)	BTL1	Remember
5.	(ii) Simplify the following Boolean expression using K- map f (x,y,z)=x y'z'+xyz+xyz'+x y' z+xyz'	(9)	BTL 1	Remember
	$f(A,B,C,D) = \sum (0,1,5,6,7,10,12,14) + \sum (3,9)$			
6.	Reduce the Boolean function using k-map technique and implement using gates $f(w,x,y,z) = \sum m(0,1,4,8,9,10)$ which has the don't cares condition $d(w,x,y,z) = \sum m(2,11)$.	(13)	BTL 2	Understand

	(i)Express the function F=A+B C in Canonical SOP form	(7)	BTL 4	Analyse
	& Canonical POS form			
7.	(ii) Simplify using K map F(A B C D)=			
	$\sum_{m(7,8,0)+d(10,11,12,12,14,15)}$	(6)	BTL 2	Understand
	$\sum \prod(7, 0, 9) + \alpha(10, 11, 12, 13, 14, 13)$			
	(i)Express the function $Y = A+B^{2}C$ in canonical SOP and	(7)	BTL 3	Apply
0	canonical POS form.			
8.	(ii) Design BCD to Excess 3 code converter.	(6)	BTL 5	Englanda
		X - y		Evaluate
	(i) Implement the following Boolean function using 8:1	(7)	BTL 1	Remember
	Mux: $F(A,B,C,D) = \sum m(0,1,3,4,8,9,15)$			
9.	(ii)Design a full subtractor using half subtractors.	(6)	BTL 6	Create
	(, , , , , , , , , , , , , , , , , , ,			
	(i) Design a full adder using NOP gates		DTI 1	Domomhon
	(i) Design a fun adder using NOK gates	(7)	DILI	Kemember
10.	(ii)Design a 3*8 decoder and explain its operation as a	(1)	BTL 1	Remember
	minterm generator.	(0)	DILI	Remember
	(i) Explain about combinational logic	(7)	BTL 4	Analyse
11.	(ii) Design a 3 bit magnitude comparator using gates	(6)	BTL 4	
	(i) Draw the logic diagram of a 4 bit carry look ahead adder			
	and explain how this adder is advantageous over the ripple	(8)	BTL 4	Analyse
12.	carry adder			
	(ii)Explain with the suitable example how a multiplexer is	(5)	BTL 4	
	used to implement the Boolean function			
	(i) Write the step by step procedure for converting SOP and	(7)	BTL 3	Apply
	POS to standard SOP and POS forms	(6)	BTL 3	
13.	(ii) Design a 4-bit Binary to Gray code converter and	(0)		
	implement it using logic gates.			
	(i) Design a full subtractor and implement it using lagic	(7)	DTI 4	A
	(1) Design a full subtractor and implement it using logic	()	BIL 4	Analyze
14.	gates.	(\mathbf{C})	BTI 6	Create
	(11) Design a full adder using two half adders and an OR	(6)	DILU	Create
	gate.			
	PART – C			
	(i) Implement using NOR gates Y=(AB+C')D+EF	(8)	BTL 5	Evaluate
1.	(ii) Reduce and design the following function using K-	(7)	BTL 4	Analyze
	map $f(A,B,C,D) = \prod M(0,3,4,7,8,10,12,14) + d(2,6)$			
		(
2.	Simplify the logical expression using K-map in SOP and	(15)	BTL 5	Evaluate
	POS forms $F(A,B,C,D) = \sum m(0,2,3,6,7) + d(8,10,11,15)$			
	(i) Reduce the following minterms using K-Man	(7)	BTL 6	Create
2	$F(w, v, v, z) = \sum m (0.1.2.5.6.7.8.12.14) \pm \sum A (0.15)$		DILU	Citate
3.	(i) Implement the following function using suitable			
	multiplexer $F(a h c) = \sum m(3.7.4.5)$	(6)		
		(*)		
4.	Design a full adder using 4X1 multiplexer; also write its	(15)	BTL 6	Create
	truth table and logical diagram.			
		1	1	1

	UNIT III - SVNCHDONOUS SEQUENTIAL CIDCUITS					
	Sequential logic-SR, JK, D and T flip flops- level triggering and edge triggering					
	- counters- asynchronous and synchronous type-Modulo counters –Shift registers-					
	design of synchronous sequential circuits – Moore and Melay models - Counters, state					
	diagram; state reduction; state assignment.					
Q.No	Questions		BT	Competence		
1.	Convert T Flip Flop to D Flip Flop.		BTL 4	Analyze		
2.	State the rules for state assignment.		BTL 1	Remember		
3.	What is state assignment problem?		BTL 1	Remember		
4.	What are the benefits of state reduction?		BTL 1	Remember		
5.	Show how the JK flip-flop can be modified into a D flip- flop or a T flip-flop		BTL 3	Apply		
6.	Differentiate Mealy and Moore models.		BTL 4	Analyse		
7.	What are the disadvantages of asynchronous sequential circuit?		BTL 1	Remember		
8.	Give the characteristic equation and state diagram of JK flip-flop.		BTL 2	Understand		
9.	What is a self-starting counter?		BTL 4	Analyze		
10.	Compare combinational and sequential circuits		BTL 5	Evaluate		
11.	Examine the drawback of RS flip-flop?		BTL 3	Apply		
12.	Implement T flip-flop using JK flip-flop.		BTL 3	Apply		
13.	What is a preset table counter and ripple counter?		BTL 1	Remember		
14.	Interpret the drawback of SR flip-flop?		BTL 2	Understand		
15.	What is synchronous sequential circuit?		BTL 1	Remember		
16.	What is meant by state assignment?		BTL 6	Create		
17.	Define truth table for JK flip-flop.		BTL 2	Understand		
18.	Give the characteristic equation and characteristic table of T flip flop.		BTL 5	Evaluate		
19.	What is race around condition in flip-flops?		BTL 2	Understand		
20.	Design the excitation table for JK flip-flop.		BTL 6	Create		
	PART – B	<u> </u>				
1.	Design a counter for the following state diagram $ \begin{array}{c} $	(13)	BTL 6	Create		
2.	Estimate a sequential circuit for the following state equations $A(t+1)=C \bigoplus D$; $B(t+1) = A$; $C(t+1) = B$; $D(t+1)=C$.	(13)	BTL 2	Understand		

3.	Explain the operation, state diagram and characteristics of T flip flop and master slave JK flip flop.	(13)	BTL 2	Understand
4.	(i)Draw the logic diagram of 4-bit synchronous counter.Explain the operation of the counter using the timing diagram(ii)Explain the universal shift register in detail	(7)(6)	BTL 4 BTL 4	Analyze
5.	 (i) Construct a JK flip-flop using a JK flip-flop, a 2*1 MUX and an inverter. (ii) A sequential circuit has two JK flip-flop A and B, two inputs x and y, and one output z. the equations are JA=Bx+B'y'; KA=B'xy' JB= A'x; KB=A+xy' Z=Ax'y'+Bx'y. Draw the logic diagram and state table. 	(7)	BTL 1 BTL 1	Remember Remember
6.	 (i) Estimate a sequential circuit with two D-flip-flops A and B and one output x. When x=0, the state of the circuit goes through the state transitions from 00 01 11 10 00 and repeats. (ii) Estimate mod 7 counter using D flip-flops. 	(7)	BTL 2 BTL 2	Understand
7.	A sequential circuit has two JK flip-flops A and B. The flip- flop input functions are: $J_A=B; J_B=x$ $K_A=B x ; K_B=A \bigoplus x$ (i)Draw the logic diagram of the circuit (ii)Tabulate the state table (iii)Draw the state diagram	(4)(6)(3)	BTL 1 BTL 1 BTL 1	Remember
8.	8. Using JK flip-flops, design a synchronous counter which counts in the sequence , 000,001,010,011,100,101,110,111,000	(13)	BTL 5	Evaluate
9.	Construct reduced state diagram for the following state diagram.	(13)	BTL 3	Apply
10.	Design a 3 bit binary counter using T flip-flop.	(13)	BTL 3	Apply

	Using partitioning minimization procedure reduce the following state table:							
	PRESENT STATE	1	VEXT STA	TE	OUTPUT		BTL 2	
		W=0 W=1 Z						
11.	A	E	3	С	1			Understand
	В	Γ)	F	1			
	С	F	7	Е	0			
	E	F	7	С	0			
	F	E	3	D	0			
12.	Differentiate	asynchrono	ous and synd	chronous typ	be counters.	(13)	BTL 2	Understand
10	(i)Draw and	explain the	operation of	f Master-Sla	ve JK flipflop	, (7)	BTL 4	Create
13.	(11) Design a :	5-bit ring co	unter and n	nention its aj	pplications.	(6)		
14.	Illustrate abo	out 4-bit BC	(13)	BTL 4	Analyze			
				PART	C - C			
1.	What is meant by race-around condition? Discuss in detail aboutImage: space spac					out (15)	BTL 5	Evaluate
	STATE Design a seq	x=0 uential circi	x=1 nit using T-	x=0 flip-fløp. Th	x=1 e state table o	f (15)		
	the circuit is	as given be	tow. c	0	0			
	с	f	e	0	0			
	d	~		1	0			
	d e	<u>g</u> d	a C	1	0		BTL 6	Create
2.	d e f	g d f	a c b	1 0 1	0 0 1		BTL 6	Create
2.	d e f g	g d f g	a c b h	1 0 1 0	0 0 1 1		BTL 6	Create
2.	d e f g h	g d f g g	a c b h a	1 0 1 0 1	0 0 1 1 0		BTL 6	Create
2.	d e f g h	g d f g g	a c b h a	1 0 1 0 1	0 0 1 1 0		BTL 6	Create
2.	d e f g h	g d f g g	a c b h a	1 0 1 0 1	0 0 1 1 0		BTL 6	Create
2.	d e f g h	<u>g</u> d <u>f</u> <u>g</u> g	a c b h a	1 0 1 0 1	0 0 1 1 0		BTL 6	Create
2.	d e f g h	g d f g g	a c b h a	1 0 1 0 1	0 0 1 1 0		BTL 6	Create
2.	d e f h h	g f g g	a c b h a	10101ft registers.	0 0 1 1 0	(15)	BTL 6 BTL 4	Create Analyse
2.	d e f g h Explain in de	g d f g g etail about d ne realisatio	a c b h a ifferent shif	1 0 1 0 1 ft registers.	0 0 1 1 0	(15)	BTL 6	Create Analyse
2. 3. 4.	d e f g h Explain in de (i) Explain th	g d f g g g etail about d ne realisatio	a c b h a ifferent shif	1 0 1 0 1 ft registers. flop from T raw the output	0 0 1 1 0 flipflop	(15)	BTL 6 BTL 4 BTL 6	Create Analyse Create
2. 3. 4.	d e f g h Explain in de (i) Explain th (ii)Write sho	g d f g g g etail about d ne realisatio rt notes on s	a c b h a ifferent shif	1 0 1 0 1 ft registers. flop from T raw the outp	0 0 1 1 0 0 flipflop ut waveforms	(15)	BTL 6 BTL 4 BTL 6	Create Analyse Create

UNIT IV - ASYNCHRONOUS SYNCHRONOUS SEQUENTIAL CIRCUITS AND PROGRAMMABLE LOGIC DEVICES

Asynchronous sequential logic circuits- Transition tablity, flow tablility-race conditions, hazards & errors in digital circuits; analysis of asynchronous sequential logic circuits-introduction to Programmablility Logic Devices: PROM–PLA–PAL,CPLD-FPGA.

PART - A						
Q.No	Questions	BT Level	Competence			
1.	Define racing	BTL-1	Remember			
2.	What is critical race?	BTL-1	Remember			
3.	What is meant by transition table?	BTL-1	Remember			
4.	Estimate the types of hazards	BTL-5	Evaluate			
5.	What is the difference between flow table and transition table?	BTL-4	Analyze			
6.	Define races in Asynchronous sequential circuit.	BTL-1	Remember			
7.	Predict the hazards in asynchronous sequential circuits?	BTL-2	Understand			
8.	Show what is fundamental mode of operation in asynchronous sequential circuits?	BTL-3	Apply			
9.	What is static hazard and dynamic hazard?	BTL-4	Analyze			
10.	Define asynchronous sequential machine.	BTL-1	Remember			
11.	Predict what is a PROM?	BTL-5	Evaluate			
12.	State the difference between static 0 and static 1 hazard	BTL-2	Understand			
13.	Compose about secondary variable and excitation variables.	BTL-6	Create			
14.	Compare critical race and non critical race.	BTL-3	Apply			
15.	What is flow table? Give example.	BTL-6	Create			
16.	What is a deadlock condition?	BTL-1	Remember			
17.	Deduce the demerits in designing asynchronous sequential machines.	BTL-2	Understand			
18.	State the difference between PROM, PAL, PLA and EPROM.	BTL-3	Apply			

19.	What is a PLA?		BTL-2	Understand
20.	Point out the definition for flow table in asynchronous sequential circuit.		BTL-4	Analyze
	PART B			
1.	Design an asynchronous sequential circuit has two inputs X_2 and X_1 and one output Z. When $X_1=0$, the output Z is 0. The first change in X_2 that occurs while X_1 is 1 will cause output Z to be 1. The output Z will remain 1 until X_1 returns to 0.	(13)	BTL-6	Create
2.	(i) Implement the following function using PLA: $F(x,y,z) = \sum m(1,2,4,6)$	(7)	BTL-5	Evaluate
	(ii) For the given Boolean function, obtain the hazard-free circuit. $F(A,B,C,D)=\sum m(1,3,6,7,13,15)$	(6)		
3.	(i) Obtain the PLA program table for a combinational circuit that squares a 3 bit number. Minimize the number of product terms.(ii) A combinational circuit is defined by the functions.	(7)	BTL-1	Remember
	(a) $F_1(a,b,c) = \sum m(3,5,6,7)$ (b) $F_2(a,b,c) = \sum m(0,2,4,5,7)$	(6)	BTL-2	Understand
4.	Explain the various types of hazards in sequential circuit design and the methods to eliminate them. Give suitable examples.	(13)	BTL-4	Analyze
5.	Describe with reasons, the effect of races in asynchronous sequential circuit design. Explain its types with illustrations. Show the method of race-free state assignments with examples.	(13)	BTL-2	Understan d
6.	(i)Discover asynchronous BCD counter using JK flip- flops.(ii) An asynchronous sequential circuit is described by	(7)	BTL-1	Remembe r
	$Y=x_1x'_2+(x1 + x'_2)$ y; z=y. Draw the logic diagram, transition table and output map.	(6)	BTL-4	Analyze
7.	(i) Find a circuit that has no static hazards and implement Boolean function $F(A,B,C,D) = \sum (0,2,6,7,8,10,12)$	(7)	BTL-2	Understan d
	(ii) Explain the different types of programmable logic devices with neat sketch and compare them.	(6)	BTL-4	Analyze
8.	Derive the transition table and primitive flow table for the functional mode asynchronous sequential circuit shown in fig	(13)	BTL-2	Understan d

9. Implement the following function in PLA	(7)	BTL-3	Apply	
(i) $F_{1=}\sum m(1,2,4,6); F_{2}=\sum m(0,1,6,7); F_{3}=\sum m(2,6)$				
(ii) $F_{1=\sum}m(3,5,8,9); F_{2}=\sum m(2,3,5,8,); F_{3}=\sum m(0,1)$	(6)			
10. (i) Illustrate the following logic and analyse for the pressure of any hazard $f=x_1x_2+x'_1x_3$. If hazard is present briefly explain the type of hazard and design a hazard-free circuit.	(7) e	BTL-4	Analyze	
(ii) Illustrate the following function in PLA	(6)			
$f_1(x,y,z) = \sum m(0,1,3,5,7)$	(0)			
$f_2(x,y,z) = \sum m(2,4,6)$	(12)	DTI 1	Domonthan	
 Discover an asynchronous sequential circuit with 2 inputs T and C. The output attains a value of 1 when T=1 & C moves from 1 to 0. Otherwise the output is 0. 	s (13)	BIT-1	Kemember	
12. Discover an asynchronous BCD counter.	(13)	BTL-1	Remember	
13. Describe the steps involved in design of asynchronous sequential circuit in detail with an example.	(13)	BTL-3	Apply	
14. (i) How do you get output specification	is (4)	BTL-1	Remember	
trom a flow table in asynchronous sequential circuit operating in fundamental mode?	1			
(ii) When do you get the critical and non critical races? How will you obtain race free conditions?	(9)	BTL-1	Remember	
PART C				

1.	(i) Design a PLA structure using AND and OR logic for the	(12)	BTL-6	Create
	following function.			
	$F1=\sum m(0,1,2,3,4,7,8,11,12,15)$			
	$F2=\sum m(2,3,6,7,8,9,12,13)$			
	$F3=\sum(1,3,7,8,11,12,15)$			
	$F4=\sum(0,1,4,8,11,12,15)$	(3)	BTL-2	
	(ii) Compare PLA and PAL Circuits			Understand
2.	A combinational circuit is defined by the functions	(15)	BTL-6	Create
	$F_{1=\sum}m(3,5,6,7)$ and $F_{2=\sum}m(0,2,4,7)$. Implement the circuit			
	with PLA and PAL design.			
3.	Design an asynchronous circuit that has two inputs x1 and	(15)	BTL-6	Create
	x2 and one output z. the circuit is required to give an output			
	whenever the input sequence $(0,0)$, $(0,1)$ and $(1,1)$ received			
	but only in that order.			
	-			
4.	An asynchronous sequential circuit is described by the		BTL-4	Analyze
	following excitation and the output function			
	$Y = x_1 x_2 + (x_1 + x_2) y.$			
	(i) Draw the logic diagram of the circuit.	(4)		
	(ii) Derive the transition table and output map.	(8)		
	(iii) Describe the behaviour of the circuit.	(3)		

UNIT V - VHDL						
RTL Design –combinational logic –Sequential circuit –Operators –Introduction to Packages – Subprograms– Test bench. (Simulation/Tutorial Examples: adders, counters, flip flops, Multiplexers & De multiplexers).						
	PART - A					
Q.No	Questions		BT	Competence		
1.	What is a package in VHDL?		BTL-1	Remember		
2.	Write the VHDL behavioural model for D-flip-flop.		BTL-1	Remember		
3.	Write the VHDL code for a logical gate which gives high output only when both the inputs are high.		BTL-1	Remember		
4.	Name any four hardware description language test benches.		BTL-1	Remember		
5.	Give the syntax for package declaration and package body in VHDL		BTL-1	Remember		
6.	Write VHDL code for 2*1 MUX using behavioural modeling		BTL-1	Remember		
7.	Deduce what is test bench?		BTL-4	Analyze		
8.	Compose the operators used in VHDL		BTL-6	Create		
9.	Compile VHDL code for half adder in data flow model.		BTL-6	Create		
10.	Analyze the merits of hardware languages.		BTL-5	Evaluate		
11.	What is the function of wait statement in VHDL package?		BTL-2	Understand		
12.	Predict the need for VHDL.		BTL-4	Analyze		
13.	Prepare the VHDL code for AND gate.		BTL-5	Evaluate		
14.	Give the test bench for AND gate.		BTL-2	Understand		
15.	Show the meaning of the following RTL statement?		BTL-3	Apply		
16.	Categorize different test bench.		BTL-4	Analyze		
17.	What is subprogram overloading?		BTL-2	Understand		
18.	Expand the following acronyms. (a)VHDL (b)VHLSI		BTL-3	Apply		
19.	What are the languages that are combined together to get VHDL language?		BTL-3	Apply		
20.	Write the VHDL code for full subtractor in data flow model.		BTL-2	Understand		
	PART - B	1	1	<u> </u>		
1.	Write the VHDL code to realize a full adder using (i) Behavioral	(7+6)	BTL-1	Remembe		
	modeling. (ii) Structural modeling.			r		

2.	Write the VHDL code to realize a 3-bit gray code counter using case statement.	(13)	BTL-1	Remembe r
3.	Write VHDL code for Binary UP/ DOWN counter using JK flip- flops.	(13)	BTL-1	Remembe r
4.	Design a 3 bit magnitude comparator and write the VHDL coding to realize it using structural modelling.	(13)	BTL-2	Understan d
5.	(i)Explain the digital system design flow sequence with the help of a flow chart.	(7)	BTL-4	Analyze
	(ii) Estimate a VHDL code for a 4 bit universal shift register.	(6)	BTL-4	Analyze
6.	Explain in detail the concept of Structural modelling in VHDL with an example of full adder.	(13)	BTL-5	Evaluate
7.	(i) Explain in detail the various programming constructs used in VHDL for designing a logic circuit	(7)	BTL-4	Analyze
	(ii) Discuss the various packages. Write a VHDL code for the implementation of decoder/de-multiplexer.	(6)	BTL-4	Analyze
8.	(i) Write VHDL code for4 bit synchronous UP/DOWN counter and explain.	(8)	BTL-1	Remember
	ii) Write short notes on subprograms used for implementation of adders.	(5)	BTL-1	Remember
9.	Design a VHDL code for full adder and 8*1 MUX	(13)	BTL-6	Create
10.	Illustrate the VHDL code for JK master slave flip-flops and using JK FF as structural elements write code for 4 bit asynchronous counter.	(5+8)	BTL-4	Analyze
11.	Interpret the structural VHDL description for a 2 to 4 decoder in detail.	(13)	BTL-3	Apply
12.	Discover a VHDL code for 6 bit comparator and also explain the design procedure.	(13)	BTL-2	Understan d
13.	Discover a VHDL code for 4 bit binary counter with parallel load and explain.	(13)	BTL-2	Understan d
14.	(i) Explain the design procedure of RTL using VHDL.	(8)	BTL-3	Apply
	(ii) Write a note on VHDL test benches.	(5)	BTL-3	Apply
PART - C				
1.	Design a 4 X 4 array multiplier and write the VHDL coding to realize it using structural modelling.	(15)	BTL-6	Create
2.	 (i) Discover the VHDL code for 3 to 8 decoder. (ii) Discover the VHDL code for 4:1 multiplexer. 	(8) (7)	BTL-6	Create

3.	(i) Discuss briefly the packages in VHDL	(7)	BTL-5	Evaluate
	(ii) Write an VHDL coding for realization of clocked S-R flip			
	flop.	(8)		
4.	i) Write short notes on built-in operators used in VHDL	(7)	BTL-3	Apply
	programming.			
	ii) Write VHDL coding for 4 X 1 Multiplexer	(8)		