DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF

ELECTRICAL AND ELECTRONICS ENGINEERING

QUESTION BANK

III SEMESTER

EE8301 – ELECTRICAL MACHINES-I

Regulation – 2017

Academic Year 2018 – 2019 ODD

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

OUESTION BANK

SUBJECT: EE8301 – ELECTRICAL MACHINES-I

SEM / YEAR: IV SEMESTER/II YEAR

UNIT I MAGNETIC CIRCUITS AND MAGNETIC MATERIALS

Magnetic circuits –Laws governing magnetic circuits - Flux linkage, Inductance and energy – Statically and Dynamically induced EMF - Torque – Properties of magnetic materials, Hysterisis and Eddy Current losses - AC excitation, introduction to permanent magnets- Transformer as a magnetically coupled circuit

1	PART – A		
Q.No.	Questions	BTL	Competence
1.	Explain Statically induced EMF?	BTL5	Evaluating
2.	Prepare the list of the materials suitable for fabrication of	BTL6	Creating
	Permanent Magnets.		
3.	Classify the basic types of rotating electric machines?	BTL3	Applying
4.	What are the types of magnetic losses.	BTL1	Remembering
5.	Define magnetic flux density.	BTL1	Remembering
6.	A coil of 1500 turns carrying a current of 5 Amps produces a flux of 2.5mWb. Calculate the self inductance of the coil.	BTL3	Applying
7.	Define magnetic reluctance.	BTL1	Remembering
8.	Distinguish statically and dynamically induced EMF.	BTL2	Understanding
9.	Give the expressions for Hysteresis losses and Eddy current losses and illustrate the various ways to minimize them.	BTL3	Applying
10.	Define reluctance and permeance.	BTL1	Remembering
11.	Define Relative Permeability.	BTL2	Understanding
12.	Define (i) Ampere's Law (ii) Inductance.	BTL1	Remembering
13.	Differentiate leakage flux and mutual flux?	BTL2	Understanding
14.	Define Self Inductance.	BTL2	Understanding
15.	What are the core losses and how can this loss be minimized? Justify.	BTL5	Evaluating
16.	Infer fringing effect in a magnetic circuit?	BTL4	Analysing
17.	Discuss in brief the stacking factor.	BTL3	Applying
18.	Draw and explain the magnetization curve of ferromagnetic material.	BTL4	Analysing
19.	Compare electric and magnetic circuits.	BTL4	Analysing
20.	Formulate the coefficient of coupling?	BTL6	Creating

	PART – B		
1.	For the magnetic circuit as shown below, Calculate the self and mutual inductance between the two coils. Assume core permeability =1600. (13) $N_1 = \hbar \nabla O \qquad A C m \qquad N_2 = 100 O \qquad A C m \qquad A $	BTL 3	Applying
2.	Draw and explain the typical magnetic circuit with air-gap and its equivalent electric circuit. Hence derive the expression for air gap flux. (13)	BTL 4	Analysing
3.	Examine the property of Magnetic Materials (i) Para Magnetic (ii) Dia Magnetic Materials (iii) Ferro Magnetic Materials. (13)	BTL 3	Applying
4.	Explain the following Magnetic field properties (i) Magnetic Field (ii) Magnetic Flux (iii) Magnetic Flux Density (iv) Magnetic Intensity or Force (v) Absolute and Relative Permeability. (13)	BTL 4	Analysing
5.	An iron rod 1.8 cm diameter is bent to form a ring of mean diameter 25 cm and wound with 250 turns of wire. A gap of 1mm exists in between the end faces. Calculate the current required to produce a flux of 0.6 mWb. Take relative permeability of iron as 1200. (13)	BTL 4	Analysing
6.	(i) Specify the causes for Hysteresis and Eddy current losses in Electrical machines. Also give the methods in construction to minimize the above losses. (6)	BTL 1	Rememberin g
	(ii) List the properties of magnetic material suitable for fabrication Permanent Magnet and Electromagnet. (7)	BTL 1	Rememberin g
7.	(i) Describe the AC operation of magnetic circuits. (6)	BTL 1	Rememberin g
	(ii) Describe the principle of a typical magnetic circuit with airgap and explain. Also show that the core reluctance may be neglected in practice. (7)	BTL 1	Rememberin g
8.	The magnetic circuit has dimensions: $A_c=4*4 \text{ cm}^2$, $I_g=0.06 \text{ cm}$, $I_c=40 \text{ cm}$ and N=600 turns. Assume the value of $\mu_r=6000$ for iron. Measure the exciting current for $B_c=1.2$ T and the corresponding flux and flux linkages. (13)	BTL 6	Creating
9.	(i) Describe the methods of analyzing the magnetic circuits. (6)(ii) Examine the typical B-H Curve and hysteresis loops and explain its Concept. (7)	BTL1	Remembering

10	(i) Extend the expression for self and mutual inductance of the coil. (6)		
	(ii) Two coils A and B are wound on same iron core. There are 600 turns on A and 3600 turns on B. The current of 4A flows through coil. A produces a flux of $500*10^{-6}$ Wb in the core. If this current is reversed in 0.02 sec., Identify the average emf induced in coils A and B.(7)	BTL2	Understanding
11	For the magnetic circuit shown in fig with a core thickness of		
	5cm, exciting current of 0.5A wound with 1000turns coil, find the flux density and flux in each of the outer limbs and the central limbs. Assume relative permeability for iron of the core		
	$\frac{1}{2} mm$ $\frac{1}{5} cm$ $\frac{30 cm}{B}$ $\frac{1}{10} cm$ $\frac{1}{10} cm$ $\frac{1}{10} cm$ $\frac{1}{10} cm$	BTL2	Understanding
12	(i) Give the expression for energy density in the magnetic field.(3)	BTL2	Understanding
	(ii) Describe in detail "Eddy-current loss". (3)	BTL2	Understanding
	(iii) The total core loss of a specimen of silicon steel is found to be 1500W at 50Hz. Keeping the flux density constant the loss becomes 3000 W when the frequency is raised to75 Hz. Calculate separately the hysteresis and edd y current loss at each of their frequencies. (7)	BTL2	Understanding
13	Define and Explain the following Laws governing on Magnetic		
	Circuit (i) Magnetic Effect on Current-Right Hand Rule and Cock Screw Rule (ii) Current carrying conductor in Magnetic Field-Fleming's Left Hand and Right Hand Rule (iii) Statically Induced EMF and Dynamically Induced EMF. (13)	BTL1	Remembering
14 •	(i) Compare the similarities and dissimilarities between electric and magnetic circuits. (6)(ii) Explain the eddy current and eddy current losses in the	BTL5	Evaluating
	magnetic circuit. (7)		

	PART – C		
1.	(i) Compare the difference between electric circuit and magnetic circuit. (7)	BTL4	Analysing
	(ii)What is meant by induced emf? Explain the		

	following types of induced emf (a) Statically Induced emf. (b) Dynamically Induced emf. (8)		
2.	An electromagnetic relay has an exciting coil of 800		
۷.	turns. The coil has a cross section of 5 cm \times 5 cm. Find		
	(a) coil inductance if the air gap length is 0.5 cm. (b)	BTL 5	Evaluating
	field energy stored for a coil current of 1.25 A (c)	DILJ	Evaluating
3.	Permeance at the air gap. (15)		
5.	Explain the following Magnetic field properties (i) Magnetic Field (ii) Magnetic Flux (iii) Magnetic Flux		
	Density (iv) Magnetic Intensity or Force (v) Absolute	BTL4	Analysing
	and Relative Permeability (vi) Reluctance (vii)	DILT	Anarysing
	Permeance (viii) Magneto Motive Force. (15)		
4.	A toroidal core made of mild steel has a mean diameter		
4.	of 16cm and a cross-sectional area of 3 cm^2 . Calculate		
	a) the m.m.f to produce a flux of 4 X 10^{-4} Wb and b)	BTL4	Analysing
	the corresponding values of the reluctance of the core	DIL	Anarysing
	and the relative permeability. (15)		
	UNIT II TRANSFORMERS		
Const	truction – principle of operation – equivalent circuit par	ameters	- nhasor diagrams
	s - testing – efficiency and voltage regulation - all day eff		
	representation – inrush current - three phase transfo		
	ection – Phasing of transformer – parallel operation of three		
	Former – tap changing transformers - tertiary winding.	e phase u	ansionners - auto
ti unisi	PART - A		
1	List out the merits and demerits of core and shell type		
	List out the ments and dements of core and shen type	DTIS	
1.	transformer	BTL5	Evaluating
1. 2.	transformer. How do you reduce leakage flux in a transformer?	BTL5 BTL2	Evaluating Understanding
2.	How do you reduce leakage flux in a transformer?	BTL2 BTL4	Understanding Analysing
2. 3.	How do you reduce leakage flux in a transformer? Show the no load phasor diagram of a transformer.	BTL2 BTL4 BTL3	Understanding
2. 3. 4. 5.	How do you reduce leakage flux in a transformer?Show the no load phasor diagram of a transformer.What happens if DC supply is applied to the	BTL2 BTL4	Understanding Analysing Applying Understanding
2. 3. 4.	How do you reduce leakage flux in a transformer?Show the no load phasor diagram of a transformer.What happens if DC supply is applied to the transformer?	BTL2 BTL4 BTL3	Understanding Analysing Applying
2. 3. 4. 5.	 How do you reduce leakage flux in a transformer? Show the no load phasor diagram of a transformer. What happens if DC supply is applied to the transformer? Give the principle of transformer. List the losses in a transformer? The emf per turn for a single-phase 2200/220 	BTL2 BTL4 BTL3 BTL2	Understanding Analysing Applying Understanding
2. 3. 4. 5. 6.	 How do you reduce leakage flux in a transformer? Show the no load phasor diagram of a transformer. What happens if DC supply is applied to the transformer? Give the principle of transformer. List the losses in a transformer? The emf per turn for a single-phase 2200/220 V, 50 Hz transformer is 11 V. Calculate the 	BTL2 BTL4 BTL3 BTL2	Understanding Analysing Applying Understanding
2. 3. 4. 5. 6. 7.	 How do you reduce leakage flux in a transformer? Show the no load phasor diagram of a transformer. What happens if DC supply is applied to the transformer? Give the principle of transformer. List the losses in a transformer? The emf per turn for a single-phase 2200/220 V, 50 Hz transformer is 11 V. Calculate the number of primary and secondary turns. 	BTL2 BTL4 BTL3 BTL2 BTL1 BTL3	Understanding Analysing Applying Understanding Remembering Applying
2. 3. 4. 5. 6. 7. 8.	 How do you reduce leakage flux in a transformer? Show the no load phasor diagram of a transformer. What happens if DC supply is applied to the transformer? Give the principle of transformer. List the losses in a transformer? The emf per turn for a single-phase 2200/220 V, 50 Hz transformer is 11 V. Calculate the number of primary and secondary turns. Describe turns ratio of transformer. 	BTL2 BTL4 BTL3 BTL2 BTL1 BTL3 BTL3	Understanding Analysing Applying Understanding Remembering Applying Analysing
2. 3. 4. 5. 6. 7. 8. 9.	 How do you reduce leakage flux in a transformer? Show the no load phasor diagram of a transformer. What happens if DC supply is applied to the transformer? Give the principle of transformer. List the losses in a transformer? The emf per turn for a single-phase 2200/220 V, 50 Hz transformer is 11 V. Calculate the number of primary and secondary turns. Describe turns ratio of transformer. Whyis transformer rated in KVA?Justify 	BTL2 BTL3 BTL2 BTL1 BTL3 BTL3 BTL4 BTL1	Understanding Analysing Applying Understanding Remembering Applying Analysing Remembering
2. 3. 4. 5. 6. 7. 8.	 How do you reduce leakage flux in a transformer? Show the no load phasor diagram of a transformer. What happens if DC supply is applied to the transformer? Give the principle of transformer. List the losses in a transformer? The emf per turn for a single-phase 2200/220 V, 50 Hz transformer is 11 V. Calculate the number of primary and secondary turns. Describe turns ratio of transformer. Whyis transformer rated in KVA?Justify Explain ideal transformer and draw its phasor diagram? 	BTL2 BTL4 BTL3 BTL2 BTL1 BTL3 BTL3	Understanding Analysing Applying Understanding Remembering Applying Analysing
2. 3. 4. 5. 6. 7. 8. 9.	 How do you reduce leakage flux in a transformer? Show the no load phasor diagram of a transformer. What happens if DC supply is applied to the transformer? Give the principle of transformer. List the losses in a transformer? The emf per turn for a single-phase 2200/220 V, 50 Hz transformer is 11 V. Calculate the number of primary and secondary turns. Describe turns ratio of transformer. Whyis transformer rated in KVA?Justify Explain ideal transformer and draw its phasor diagram? Compose the advantages and applications of auto 	BTL2 BTL3 BTL2 BTL1 BTL3 BTL3 BTL4 BTL1 BTL1	Understanding Analysing Applying Understanding Remembering Applying Analysing Remembering Remembering
2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	 How do you reduce leakage flux in a transformer? Show the no load phasor diagram of a transformer. What happens if DC supply is applied to the transformer? Give the principle of transformer. List the losses in a transformer? The emf per turn for a single-phase 2200/220 V, 50 Hz transformer is 11 V. Calculate the number of primary and secondary turns. Describe turns ratio of transformer. Whyis transformer rated in KVA?Justify Explain ideal transformer and draw its phasor diagram? Compose the advantages and applications of auto transformer. 	BTL2 BTL3 BTL2 BTL1 BTL3 BTL3 BTL4 BTL1	Understanding Analysing Applying Understanding Remembering Applying Analysing Remembering
2. 3. 4. 5. 6. 7. 8. 9. 10.	 How do you reduce leakage flux in a transformer? Show the no load phasor diagram of a transformer. What happens if DC supply is applied to the transformer? Give the principle of transformer. List the losses in a transformer? The emf per turn for a single-phase 2200/220 V, 50 Hz transformer is 11 V. Calculate the number of primary and secondary turns. Describe turns ratio of transformer. Whyis transformer rated in KVA?Justify Explain ideal transformer and draw its phasor diagram? Compose the advantages and applications of auto transformer. Differentiate two winding transformer and auto 	BTL2 BTL3 BTL2 BTL1 BTL3 BTL3 BTL3 BTL4 BTL1 BTL1 BTL1	Understanding Analysing Applying Understanding Remembering Applying Analysing Remembering Remembering Remembering
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.	 How do you reduce leakage flux in a transformer? Show the no load phasor diagram of a transformer. What happens if DC supply is applied to the transformer? Give the principle of transformer. List the losses in a transformer? The emf per turn for a single-phase 2200/220 V, 50 Hz transformer is 11 V. Calculate the number of primary and secondary turns. Describe turns ratio of transformer. Whyis transformer rated in KVA?Justify Explain ideal transformer and draw its phasor diagram? Compose the advantages and applications of auto transformer. Differentiate two winding transformer and auto transformer. 	BTL2 BTL3 BTL2 BTL1 BTL3 BTL3 BTL4 BTL1 BTL1	Understanding Analysing Applying Understanding Remembering Applying Analysing Remembering Remembering
2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	 How do you reduce leakage flux in a transformer? Show the no load phasor diagram of a transformer. What happens if DC supply is applied to the transformer? Give the principle of transformer. List the losses in a transformer? The emf per turn for a single-phase 2200/220 V, 50 Hz transformer is 11 V. Calculate the number of primary and secondary turns. Describe turns ratio of transformer. Whyis transformer rated in KVA?Justify Explain ideal transformer and draw its phasor diagram? Compose the advantages and applications of auto transformer. Differentiate two winding transformer and auto transformer. Full load copper loss in a transformer is 1600 W, What 	BTL2 BTL3 BTL2 BTL1 BTL3 BTL3 BTL4 BTL1 BTL1 BTL1 BTL1	Understanding Analysing Applying Understanding Remembering Applying Analysing Remembering Remembering Remembering Remembering
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	 How do you reduce leakage flux in a transformer? Show the no load phasor diagram of a transformer. What happens if DC supply is applied to the transformer? Give the principle of transformer. List the losses in a transformer? The emf per turn for a single-phase 2200/220 V, 50 Hz transformer is 11 V. Calculate the number of primary and secondary turns. Describe turns ratio of transformer. Whyis transformer rated in KVA?Justify Explain ideal transformer and draw its phasor diagram? Compose the advantages and applications of auto transformer. Differentiate two winding transformer and auto transformer. Full load copper loss in a transformer is 1600 W, What will be the loss at half load? 	BTL2 BTL3 BTL2 BTL1 BTL3 BTL3 BTL4 BTL1 BTL1 BTL1 BTL1 BTL1	Understanding Analysing Applying Understanding Remembering Applying Analysing Remembering Remembering Remembering Remembering Remembering
2. 3. 4. 5. 6. 7. 7. 8. 9. 10. 11. 12. 13. 14.	 How do you reduce leakage flux in a transformer? Show the no load phasor diagram of a transformer. What happens if DC supply is applied to the transformer? Give the principle of transformer. List the losses in a transformer? The emf per turn for a single-phase 2200/220 V, 50 Hz transformer is 11 V. Calculate the number of primary and secondary turns. Describe turns ratio of transformer. Whyis transformer rated in KVA?Justify Explain ideal transformer and draw its phasor diagram? Compose the advantages and applications of auto transformer. Differentiate two winding transformer and auto transformer. Full load copper loss in a transformer is 1600 W, What will be the loss at half load? Deduce the regulation of a transformer. 	BTL2 BTL3 BTL2 BTL1 BTL1 BTL3 BTL4 BTL1 BTL1 BTL1 BTL1 BTL1 BTL1 BTL1	Understanding Analysing Applying Understanding Remembering Applying Analysing Remembering Remembering Remembering Remembering Remembering Remembering
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.	 How do you reduce leakage flux in a transformer? Show the no load phasor diagram of a transformer. What happens if DC supply is applied to the transformer? Give the principle of transformer. List the losses in a transformer? The emf per turn for a single-phase 2200/220 V, 50 Hz transformer is 11 V. Calculate the number of primary and secondary turns. Describe turns ratio of transformer. Whyis transformer rated in KVA?Justify Explain ideal transformer and draw its phasor diagram? Compose the advantages and applications of auto transformer. Differentiate two winding transformer and auto transformer. Full load copper loss in a transformer is 1600 W, What will be the loss at half load? Deduce the regulation of a transformer. 	BTL2 BTL3 BTL2 BTL1 BTL1 BTL3 BTL4 BTL1 BTL1 BTL1 BTL1 BTL1 BTL1 BTL1 BTL1	Understanding Analysing Applying Understanding Remembering Applying Analysing Remembering Remembering Remembering Remembering Remembering Evaluating Understanding
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	 How do you reduce leakage flux in a transformer? Show the no load phasor diagram of a transformer. What happens if DC supply is applied to the transformer? Give the principle of transformer. List the losses in a transformer? The emf per turn for a single-phase 2200/220 V, 50 Hz transformer is 11 V. Calculate the number of primary and secondary turns. Describe turns ratio of transformer. Whyis transformer rated in KVA?Justify Explain ideal transformer and draw its phasor diagram? Compose the advantages and applications of auto transformer. Differentiate two winding transformer and auto transformer. Full load copper loss in a transformer is 1600 W, What will be the loss at half load? Deduce the regulation of a transformer. 	BTL2 BTL3 BTL2 BTL1 BTL1 BTL3 BTL4 BTL1 BTL1 BTL1 BTL1 BTL1 BTL1 BTL1	Understanding Analysing Applying Understanding Remembering Applying Analysing Remembering Remembering Remembering Remembering Remembering Remembering
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16.	 How do you reduce leakage flux in a transformer? Show the no load phasor diagram of a transformer. What happens if DC supply is applied to the transformer? Give the principle of transformer. List the losses in a transformer? The emf per turn for a single-phase 2200/220 V, 50 Hz transformer is 11 V. Calculate the number of primary and secondary turns. Describe turns ratio of transformer. Whyis transformer rated in KVA?Justify Explain ideal transformer and draw its phasor diagram? Compose the advantages and applications of auto transformer. Differentiate two winding transformer and auto transformer. Full load copper loss in a transformer is 1600 W, What will be the loss at half load? Deduce the regulation of a transformer. Predict the causes of stray losses? Show the condition for parallel operation of a transformer? 	BTL2 BTL3 BTL2 BTL1 BTL1 BTL3 BTL4 BTL1 BTL1 BTL1 BTL1 BTL1 BTL1 BTL1 BTL1	UnderstandingAnalysingApplyingUnderstandingRememberingApplyingApplyingAnalysingRememberingRememberingRememberingRememberingRememberingRememberingRememberingUnderstandingUnderstandingUnderstandingUnderstanding
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17.	 How do you reduce leakage flux in a transformer? Show the no load phasor diagram of a transformer. What happens if DC supply is applied to the transformer? Give the principle of transformer. List the losses in a transformer? The emf per turn for a single-phase 2200/220 V, 50 Hz transformer is 11 V. Calculate the number of primary and secondary turns. Describe turns ratio of transformer. Whyis transformer rated in KVA?Justify Explain ideal transformer and draw its phasor diagram? Compose the advantages and applications of auto transformer. Differentiate two winding transformer and auto transformer. Full load copper loss in a transformer is 1600 W, What will be the loss at half load? Deduce the regulation of a transformer. Predict the causes of stray losses? Show the condition for parallel operation of a transformer? 	BTL2 BTL3 BTL2 BTL1 BTL1 BTL3 BTL4 BTL1 BTL1 BTL1 BTL1 BTL1 BTL1 BTL1 BTL1	Understanding Analysing Applying Understanding Remembering Applying Analysing Remembering Remembering Remembering Remembering Remembering Understanding Understanding Understanding
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16.	 How do you reduce leakage flux in a transformer? Show the no load phasor diagram of a transformer. What happens if DC supply is applied to the transformer? Give the principle of transformer. List the losses in a transformer? The emf per turn for a single-phase 2200/220 V, 50 Hz transformer is 11 V. Calculate the number of primary and secondary turns. Describe turns ratio of transformer. Whyis transformer rated in KVA?Justify Explain ideal transformer and draw its phasor diagram? Compose the advantages and applications of auto transformer. Differentiate two winding transformer and auto transformer. Full load copper loss in a transformer is 1600 W, What will be the loss at half load? Deduce the regulation of a transformer. Predict the causes of stray losses? Show the condition for parallel operation of a transformer? 	BTL2 BTL3 BTL2 BTL1 BTL1 BTL3 BTL4 BTL1 BTL1 BTL1 BTL1 BTL1 BTL1 BTL1 BTL1	Understanding Analysing Applying Understanding Remembering Applying Analysing Remembering Remembering Remembering Remembering Remembering Remembering Remembering Understanding Understanding Understanding Understanding

	efficiency is lower than commercial efficiency?		
20.	Interpret the Inrush current in a transformer	BTL6	Creating
20.	PART - B	DILO	Creating
1.	Explain the construction, working principle and		
1.	operation of a transformer. Derive its emf equation.	BTL4	Analysing
	(13)		Anarysing
2.	The voltage per turn of a single phase transformer		
2.	is 1.1 volt, when the primary winding is connected to		
	a 220 volt, 50 Hz AC supply the secondary voltage is	BTL5	
	found to be 550 volt. Identify the primary and	2120	Evaluating
	secondary turns and core area if maximum flux density		
	is 1.1 Tesla. (13)		
3.	Calculate the efficiency for half, full load of a 100KVA		
	transformer for the P.F of unity and 0.8, the copper	BTL3	Applying
	loss at full load is 1000W and iron loss is 1000W. (13)		
4.	Develop the equivalent circuit of a single phase		Oraștină
	transformer referred to primary and secondary. (13)	BTL6	Creating
5.	Draw and explain the phasor diagram of transformer		Applying
	when it is operating under load. (13)	BTL3	
6.	(i) The emf per turn of a single phase, 6.6 kV/440 V, 50	BTL1	Remembering
	Hz transformer is approximately 10V. Calculate the		
	number of turns in the HV and LV windings and the		
	net cross sectional area of the core for a maximum flux		
	density of 1.6 T. (7)		
	(ii) A 500 KVA Transformer has a core loss of 2200		
	watts and a full load copper loss of 7500 watts. If the		
	power factor of the load is 0.90 lagging, Evaluate the	BTL 5	Evaluating
	full load efficiency and the KVA load at which		
7.	maximum efficiency occurs. (6) (i) A 11000/230 V, 150 kVA, 1-phase, 50 Hz		
7.	transformer has loss of 1.4 kW and Full Load copper		
	loss of 1.6 kW. Determine (i) the kVA load for		
	maximum efficiency and the value of maximum	BTL2	Understanding
	efficiency at unity p.f. (ii) The efficiency at 0.8 pf	DILL	
	leading. (6)		
	(ii) A 500KVA transformer has 95% efficiency		
	at full load and also at 60% of full load both at		
	UPF.		TT 1 / 1
	a) Separate out the transformer losses.	BTL2	Understanding
	b) Measure the transformer efficiency 75% full load,		
	UPF. (7)		
8.	(i) Obtain the generalised conditions for parallel		
	operation of Transformer. Also explain the effect of	BTL6	Creating
	load sharing due to impedance variation between	DILU	Cicaling
	transformers during parallel operation. (7)		
	(ii) A 100 KVA, 3300 V/240 V, 50 HZ single phase		
	transformer has 990 turns on the primary. Identify		
	the number of turns on secondary and the	BTL1	Remembering
	approximate value of primary and secondary full		
	load currents. (6)		
9.	A single phase transformer has 180 turns	BTL1	Remembering
	respectively in its secondary and primary windings.		

	The respective resistances are 0.233 and 0.067.		
	Calculate the equivalent resistance of a) the primary in		
	terms of the secondary winding b) the secondary		
	in terms of the primary winding c) the total		
	resistance of the transformer in terms of the		
	primary.(13)		
10.	Explain the back to back method of testing for two	BTL2	Understanding
	identical single phase transformers. (13)		
11.	Obtain the equivalent circuit of a 200/400V 50 Hz		
	single phase transformer from the following test data.		
	O.C.test: 200V, 0.7A, 70W – on L .V Side		
	S.C. test: 15V, 10A, 85W – on H.V side	BTL4	Analysing
	Calculate the secondary voltage when delivering 5		
	kW at 0.8 p.f. lagging. The primary voltage being 200V. (13)		
12.	Describe the various three phase transformer		
	connection and parallel operation of three phase	BTL1	Remembering
	transformer. (13)		
13.	Describe the method of calculating the regulation and		
	efficiency of a single phase transformer by OC and SC	BTL1	Remembering
	tests? (13)		
14.	i) Interpret in detail about the autotransformer, their		
	principle. Arrive at the expression for saving of		
	copper.(10)	BTL4	Analysing
	ii) Evaluate in brief the voltage regulation with		
	necessary expressions. (5)		
	PART - C		
1.	Obtain the equivalent circuit of a 200/400V 50 Hz		
	single phase transformer from the following test data.		
	O.C.test: 1100V, 0.5A, 55W – on primary Side,		
	secondary being open circuited		
	S.C. test: 10V, 80A, 400 W – on LV side, high voltage	BTL 4	Analysing
	side being short circuited.		
	Calculate the voltage regulation and efficiency for the		
	above transformer when supplying 100A at 0.8 p.f.		
	lagging. (15)		
2.	A 20 kVA, 2000/200V, 50 Hz, single phase		
	transformer has the following parameters:		
	$r_1 = 2.8 \ \Omega, r_2=0.02\Omega, x_{11}=4.2\Omega \text{ and } x_{12}=0.6\Omega.$		
	Calculate (i) Equivalent resistance, leakage reactance	BTL 4	Analysing
	and impedance referred to HV side. (ii) Equivalent		
	resistance, leakage reactance and impedance referred		
	to LV side. (iii) Full load copper loss. (15)		
3.	The primary of the transformer is rated at 10A and		
	1000V. The open circuit reading are V_1 =1000V,		
	V ₂ =500V, I=.42Å, P _{ac} =100W.		
	The short circuit readings are $I_1=10A, V_1=125V$ and	BTL 5	Creating
	P _{ac} =400W. Draw the equivalent circuit for the	DILJ	Creating
	transformer. Predict the ouput voltage for the load		
	transformer. Predict the ouput voltage for the load impedance $Z_L=19+j12$ ohms and draw the phasor		
4.	transformer. Predict the ouput voltage for the load	BTL 5	Creating

turns secondary. The primary and secondary
resistances are 0.4 ohm and 0.020hm respectively and
the corresponding leakage reactances are 1.50hm and
0.0450hm respectively. The supply voltage is 2200V,
evaluate (a) equivalent impedance referred to primary
circuit and (b) voltage regulation and secondary
terminal voltage for full load load at power factor of (i)
0.8 lagging and (ii) 0.8 leading. (15)

UNIT III ELECTROMECHANICAL ENERGY CONVERSION AND CONCEPTS IN ROTATING MACHINES

Energy in magnetic system – Field energy and coenergy - force and torque equations – singly and multiply excited magnetic field systems - mmf of distributed windings – Winding Inductances - magnetic fields in rotating machines – rotating mmf waves – magnetic saturation and leakage fluxes.

	PART - A		
1.	Describe co energy?	BTL2	Understanding
2.	Why do all practical energy conversion devices make use of the magnetic field as a coupling medium rather than an electric field? Explain.	BTL4	Analysing
3.	Compose the advantages of analyzing energy conversion devices byfield energy concept?	BTL4	Analysing
4.	Give the general block diagram of electromechanical energy conversion device.	BTL2	Understanding
5.	Formulate synchronous speed. Write the expression also.	BTL6	Creating
6.	Differentiate the pitch factor and distribution factor?	BTL2	Understanding
7.	Generalize example for singly and multiply excitation systems.	BTL6	Creating
8.	Explain reactance voltage?	BTL4	Analysing
9.	List the basic requirements of the excitation systems?	BTL1	Remembering
10.	Tell why fractional pitched winding is preferred over full.	BTL1	Remembering
11.	Why the relationship between current and coil flux linkages of electromechanical energy conversion devices are linear?	BTL1	Remembering
12.	Show the equation, which relates rotor speed in electrical and mechanical radian/second.	BTL1	Remembering
13.	Draw the diagram showing the flow of energy in electromechanical energy conversion via coupling medium.	BTL3	Applying
14.	Define winding factor?	BTL1	Remembering
15.	In a linear system Show that field energy and co energy are equal.	BTL3	Applying
16.	What are the cusses for irrecoverable energy loss when the flux in the magnetic circuits undergoes a cycle?	BTL2	Understanding
17.	Deduce the assumptions made to determine the distribution of coil mmf?	BTL5	Evaluating
18.	Define the term pole pitch and coil pitch.	BTL1	Remembering
19.	Why synchronous machine does not produce torque at any other speed? Justify.	BTL5	Evaluating
20.	Describe SPP? What is its significance?	BTL2	Understanding

	PART - B		
1.	Two coupled coils have self and mutual inductance of $L_{11} = 3+0.5x$; $L_{22} = 2+0.5x$; $L_{12} = L_{21} = 0.3x$ over a certain range of linear displacement x. the first coil is excited by a constant current of 15 A and the second by a constant current of -8 A. Determine, (i) Mechanical work done if x changes from 0.6m to 1m. (ii) Energy supplied by each electrical source. (13)	BTL1	Remembering
2.	Formulate the torque equation of a round rotor machine. Also clearly state the assumptions made. (13)	BTL6	Creating
3.	Consider an attracted armature relay is excited by an electric source. Explain about the mechanical force developed and the mechanical energy output with necessary equation for linear and nonlinear cases. (13)	BTL2	Understanding
4.	Explain briefly the production of rotating magnetic field. What are the speed and direction of rotation of the field? Is the speed uniform? (13)	BTL4	Analysing
5.	(i) Describe the concept of rotating MMF waves in AC Machine. (6)	BTL1	Remembering
	(ii) Obtain an expression for the mechanical force of field origin in a typical Attracted armature relay. (7)	BTL2	Understanding
6.	Derive an expression for the magnetic force developed in a multiply excited magnetic systems. (13)	BTL2	Understanding
7.	Illustrate the necessary expression for co-energy density of an Electromechanical energy conversion device. (13)	BTL3	Applying
8.	(i) Describe the torque in doubly excited magnetic system and show that is equal to the rate of increase of field energy with respect to displacement at constant current. (6)	BTL2	Understanding
	(ii) The λ -I characteristics of singly excited electromagnet is given by i= 121 $\lambda^2 x^2$ for 0 <i<4 a<br="">and 0<x<10cm. 5cm="" a="" air="" and="" current<br="" gap="" if="" is="" the="">of 3A is flowing in the coil, Identify (a) Field Energy (b) Co- energy (c) Mechanical Force on the moving part. (7)</x<10cm.></i<4>	BTL1	Remembering
9.	Describe the m.m.f space wave of one phase of distributed a.c. winding. (13)	BTL1	Remembering
10.	(i) Describe the flow of energy in electromechanical devices. (4)	BTL1	Remembering
	(ii) Describe about the 'field energy' and 'co energy'in		Remembering

	magnetic system.(4)	BTL1	
	(iii) The magnetic flux density on the surface of an		
	iron face is 1.6 T which is a typical saturation level		
	value for ferromagnetic material. Identify the force	BTL1	Remembering
	density on the iron face. (5)		
11.	Derive an expression for the magnetic energy stored in		
11.		BTL4	Analysing
	a singly excited electromagnetic relay. (13)		
12.	Evaluate an expression for co-energy density of an	BTL5	Evaluating
	electromechanical energy conversion device. (13)	-	6
13.	Two windings, one mounted in stator and other at		
	rotor have self a n d mutual inductance of $L_{11} = 4.5$		
	and L_{22} =2.5, L_{12} =2.8cos θ where θ is the angle		
	between axes of winding. Winding2 is short	BTL4	Analysing
	circuited and current in winding as a function of time	DILT	Anarysing
	is $i_1 = 10 \text{ sin}\omega t$ A. Infer the expression for numerical		
	value in Newton-meter for the instantaneous value of		
	torque in terms of θ . (13)		
14.	In an electromagnetic relay, functional relation		
	between the current i in the excitation coil, the		
	position of armature is x and the flux linkage Ψ is	BTL3	Applying
	given by $i=2\Psi^3 + 3(1-x+x^2)$, x>0.5. Examine the		
	force on the armature as a function of Ψ . (13)		
	PART - C		1
1.	The doubly-excited magnetic field has coil self and		
	mutual inductances of		
	$L_{11}=L_{22}=2$		
	$L_{12}=L_{21}=\cos\theta$		
	Where θ is the angle between the axes of the coils.		Creating
	The coils are connected in parallel to a voltage source	BTL6	
	$V=V_{m}\sin\omega t$. Derive an expression for the		
	instantaneous torque as a function of the angular		
	position θ . Find the time-average torque. Evaluate for		
2	θ =30deg, γ =100sin314t. (15)		
2.	(i) Explain the concepts of rotating MMF waves in AC	BTL5	
	Machines. (7)		
	(ii) The magnetic flux density on the surface of		Evaluating
	an iron faces is 1.8T which is a typical saturation level value for ferromagnetic material.	BTL5	
	Identify the force density on the iron face.(8)		
3.	With neat sketch explain multiple excited magnetic		
э.	field system in electromechanical energy conversion		
	systems. Also obtain the expression for field energy	BTL4	Analysing
	in the system. (15)		
4.	Explain in detailed MMF distribution in AC		
	synchronous machine and derive the expression for	BTL5	Evaluating
	fundamental MMF. (15)	~ 1	_ · uruuting
	UNIT IV DC GENERATORS		1
Constr	uction and components of DC Machine – Principle of	f operation	- Lap and wave
	gs - EMF equations – circuit model – armature reaction		
	itation and interpoles - compensating winding – character		
1.	List the factors involved in the voltage buildup of a	BTL1	Remembering

Why the armature core in a DC machine is constructed with laminated steel sheets instead of solid steel sheets? Define residual EMF in DC Generator? Define back pitch and front pitch. Define winding pitch and commutator pitch. Define Commutation and Commutation period. Differentiate Lap winding and Wave Winding of a DC machine armature. Discuss why the external characteristics of a DC Shunt Generator is more drooping than that of a separately excited. Discuss the detail under which conditions a dc shunt generator fails to excite. Discuss the purpose of yoke in dc machine. Classify the different types of DC Generators based on	BTL1 BTL1 BTL1 BTL1 BTL2 BTL2 BTL2 BTL2	Remembering Remembering Remembering Remembering Understanding Understanding
 with laminated steel sheets instead of solid steel sheets? Define residual EMF in DC Generator? Define back pitch and front pitch. Define winding pitch and commutator pitch. Define Commutation and Commutation period. Differentiate Lap winding and Wave Winding of a DC machine armature. Discuss why the external characteristics of a DC Shunt Generator is more drooping than that of a separately excited. Discuss the detail under which conditions a dc shunt generator fails to excite. Discuss the purpose of yoke in dc machine. Classify the different types of DC Generators based on 	BTL1 BTL1 BTL1 BTL2 BTL2 BTL2	Remembering Remembering Remembering Understanding Understanding Understanding
sheets?Define residual EMF in DC Generator?Define back pitch and front pitch.Define winding pitch and commutator pitch.Define Commutation and Commutation period.Differentiate Lap winding and Wave Winding of a DC machine armature.Discuss why the external characteristics of a DC Shunt Generator is more drooping than that of a separately excited.Discuss the detail under which conditions a dc shunt generator fails to excite.Discuss the purpose of yoke in dc machine.Classify the different types of DC Generators based on	BTL1 BTL1 BTL1 BTL2 BTL2 BTL2	Remembering Remembering Remembering Understanding Understanding Understanding
Define back pitch and front pitch. Define winding pitch and commutator pitch. Define Commutation and Commutation period. Differentiate Lap winding and Wave Winding of a DC machine armature. Discuss why the external characteristics of a DC Shunt Generator is more drooping than that of a separately excited. Discuss the detail under which conditions a dc shunt generator fails to excite. Discuss the purpose of yoke in dc machine. Classify the different types of DC Generators based on	BTL1 BTL1 BTL2 BTL2 BTL2 BTL2	Remembering Remembering Remembering Understanding Understanding Understanding
Define winding pitch and commutator pitch. Define Commutation and Commutation period. Differentiate Lap winding and Wave Winding of a DC machine armature. Discuss why the external characteristics of a DC Shunt Generator is more drooping than that of a separately excited. Discuss the detail under which conditions a dc shunt generator fails to excite. Discuss the purpose of yoke in dc machine. Classify the different types of DC Generators based on	BTL1 BTL1 BTL2 BTL2 BTL2	Remembering Remembering Understanding Understanding Understanding
Define Commutation and Commutation period. Differentiate Lap winding and Wave Winding of a DC machine armature. Discuss why the external characteristics of a DC Shunt Generator is more drooping than that of a separately excited. Discuss the detail under which conditions a dc shunt generator fails to excite. Discuss the purpose of yoke in dc machine. Classify the different types of DC Generators based on	BTL1 BTL2 BTL2 BTL2	Remembering Understanding Understanding Understanding
Differentiate Lap winding and Wave Winding of a DC machine armature. Discuss why the external characteristics of a DC Shunt Generator is more drooping than that of a separately excited. Discuss the detail under which conditions a dc shunt generator fails to excite. Discuss the purpose of yoke in dc machine. Classify the different types of DC Generators based on	BTL2 BTL2 BTL2	Understanding Understanding Understanding
machine armature. Discuss why the external characteristics of a DC Shunt Generator is more drooping than that of a separately excited. Discuss the detail under which conditions a dc shunt generator fails to excite. Discuss the purpose of yoke in dc machine. Classify the different types of DC Generators based on	BTL2 BTL2	Understanding Understanding
Generator is more drooping than that of a separately excited. Discuss the detail under which conditions a dc shunt generator fails to excite. Discuss the purpose of yoke in dc machine. Classify the different types of DC Generators based on	BTL2	Understanding
generator fails to excite. Discuss the purpose of yoke in dc machine. Classify the different types of DC Generators based on		6
Discuss the purpose of yoke in dc machine. Classify the different types of DC Generators based on	BTL2	TT 1 . 1
Classify the different types of DC Generators based on		Understanding
method of excitation?	BTL3	Applying
Demonstrate the armature reaction in DC Generators? What are its effects?	BTL3	Applying
Illustrate a schematic diagram indicating flow of energy in the conversion of Mechanical Energy into Electrical Energy.	BTL3	Applying
Explain in short the role of inter poles in DC Machines.	BTL4	Analysing
Pointout why the air gap between the pole pieces and the armature is kept very small?	BTL4	Analysing
Explain in short the Commutation and Commutation period.	BTL4	Analysing
Integrate the Characteristics of all DC Generators in single graph.	BTL5	Evaluating
Generators.	BTL5	Evaluating
Generalize the requirements of the excitation systems?	BTL6	Creating
Develop critical resistance of a dc shunt generator.	BTL6	Creating
PART - B		
 (i) Draw and Explain the Internal and External Characteristics of different types of DC Generators. (6) (ii) A 4 pole DC Shunt Generator with lap connected armature supplies 5 kilowatt at 230 Volts. The armature and field copper losses are 360 Watts and 200 Watts respectively. Calculate the armature current 	BTL1	Remembering
and generated EMF? (7) A separately excited generator when running at 1000rpm supplied 200A at 125V. What will be the load current when the speed drops to 800rpm if I_f is unchanged? Given that armature resistance=0.04 Ω	BTL6	Creating
	What are its effects? Illustrate a schematic diagram indicating flow of energy in the conversion of Mechanical Energy into Electrical Energy. Explain in short the role of inter poles in DC Machines. Pointout why the air gap between the pole pieces and the armature is kept very small? Explain in short the Commutation and Commutation period. Integrate the Characteristics of all DC Generators in single graph. Summarize the application of various types of Generators. Generalize the requirements of the excitation systems? Develop critical resistance of a dc shunt generator. PART - B (i) Draw and Explain the Internal and External Characteristics of different types of DC Generators. (6) (ii) A 4 pole DC Shunt Generator with lap connected armature supplies 5 kilowatt at 230 Volts. The armature and field copper losses are 360 Watts and 200 Watts respectively. Calculate the armature current and generated EMF? (7) A separately excited generator when running at 1000rpm supplied 200A at 125V. What will be the load current when the speed drops to 800rpm if I _f is	method of excitation?BTL3Demonstrate the armature reaction in DC Generators?BTL3What are its effects?BTL3Illustrate a schematic diagram indicating flow of energy in the conversion of Mechanical Energy into Electrical Energy.BTL3Explain in short the role of inter poles in DC Machines.BTL4Pointout why the air gap between the pole pieces and the armature is kept very small?BTL4Explain in short the Commutation and Commutation period.BTL4Integrate the Characteristics of all DC Generators in single graph.BTL5Summarize the application of various types of Generators.BTL5Generalize the requirements of the excitation systems?BTL6Develop critical resistance of a dc shurt generator.BTL6(i) Draw and Explain the Internal and External Characteristics of different types of DC Generators.BTL1(ii) A 4 pole DC Shunt Generator with lap connected armature and field copper losses are 360 Watts and 200 Watts respectively. Calculate the armature current and generated EMF? (7)BTL1A separately excited generator when running at 1000rpm supplied 200A at 125V. What will be the load current when the speed drops to 800rpm if If is unchanged? Given that armature resistance=0.04Ω and brush drop=2V. Derive the necessaryBTL6

3.	In a 400 volts, DC Compound Generator, the resistance of the armature, series and shunt windings are 10 ohm, 0.05 ohm and 100 ohms respectively. The machine supplies power to 20 Nos. resistive heaters, each rated 500 watts, 400 volts. Identify the induced emf and armature currents when the generator is connected in (1) Short Shunt (2) Long Shunt. Allow brush contact drop of 2 volts per brush. (13)	BTL2	Understanding
4.	(i) Explain the armature reaction and commutation in detail for a DC Machine. (6)	BTL4	Analysing
	(ii) A 4 pole 50 kW 250 V wave wound shunt generator has 400 armature conductors. Brushes are given a lead of 4 commutator segments. Calculate the demagnetization ampere-turns per pole if shunt field resistance is 50Ω . Also calculate extra shunt field turns per pole to neutralize the demagnetization. (7)		
5.	With neat sketch explain the construction and principle of operation of DC Generator. (13)	BTL2	Understanding
6.	A 6-pole DC Generator has 150 slots. Each slot has 8 conductors and each conductor has resistance of 0.01Ω . The armature terminal current is 15 A. Calculate the current per conductor and the drop in armature for Lap and Wave winding connections. (13)	BTL3	Applying
7.	(i) Show the condition for maximum efficiency of the DC Generator. (7)	BTL2	Understanding
	 (ii) Explain the following: (a) Self and separately excited DC generators(3) (b) Commutation.(3) 	BTL1	Remembering
8.	 (i) Calculate the emf induced in the armature of a two pole generator whose armature has 280 conductors and is revolving at 1000 rpm. The flux per pole is 0.03 Weber. (6) (ii) Calculate the generated emf of a DC Generator which has 4 poles total number of conductors equal to 256 Lap wound running at 2000 rpm. The useful flux per pole is 0.2 Weber. (7) 	BTL1	Remembering
9.	Explain in detail about commutation and list out the various methods of improving commutation in detail with a neat sketch. (13)	BTL1	Remembering
10.	 (i) Derive an expression for the EMF Equation of DC Generator. (7) (ii) The lap wound armature has a 4-pole generator has 51 slots. Each slot contains 20 conductors. What will be the emf generated in machine when driven at 1500 rpm. If useful flux per pole is 0.01 Wb? (6) 	BTL4	Analysing
11.	A 12 pole DC Generator has a simple wave wound armature containing 144 coils of 10 turns each. The resistance of each turn is 0.01 ohm. Its flux per pole is 0.05 Weber and it is running at a speed of 200 rpm. Obtain the induced armature voltage and the effective resistance. (13)	BTL5	Evaluating

12.	Explain the different methods of excitation and characteristics of DC Generators with suitable diagram. (13)	BTL4	Analysing
13.	Explain the following constructional components of DC Machine (i) Magnetic Frame or Yoke (ii) Pole Core (iii) Field Coils (iv) Armature (v) Armature Winding (vi) Commutator (vii) Brushes and Bearings. (13)	BTL3	Applying
14.	Explain the effect of armature reaction in a dc generator. How are its demagnetizing and cross magnetizing calculated. (13)	BTL4	Analysing

	PART - C		
1.	A four pole lap wounded shunt generator supplies 60 lamps of 100W, 240V each; the field and armature resistances are 550hm and 0.180hm respectively. If the brush drop is 1volt for each brush formulate (i) armature current (ii) current per path (iii) generated emf (iv) power output of dc machine. (15)	BTL6	Creating
2.	 (a) In Armature Reaction Explain the following terms (i) Main field of DC Machine (ii) Armature Field of DC Machine (iii) Interaction between a main field and armature mmf (iv) Armature conductor and Ampere Turns. (8) (b) In commutation Explain the following terms (i) Mechanical Cause of Commutation (ii) Electrical cause of commutation (iii) Process of commutation (iv) Methods to improve commutation. (7) 	BTL5	Evaluating
3.	 (i) With suitable neat diagram explain the construction of a DC Machine and also explain each elements. (8) (ii) With neat diagram explain principle of operation of a DC Machine. (7) 	BTL4	Applying
4.	 (i) Obtain the expression for the EMF Equation of a DC Generator. (8) (ii) Explain the following terms in DC Generator (a) Lap and Wave Winding (b) Compensation Winding. (7) 	BTL4	Applying
	UNIT V DC MOTORS		

Principle and operations - types of DC Motors – Speed Torque Characteristics of DC Motors starting and speed control of DC motors –Plugging, dynamic and regenerative braking testing and efficiency – Retardation test- Swinburne's test and Hopkinson's test – Permanent Magnet DC (PMDC) motorsapplications of DC Motor

1.	Define Back emf in a D.C. Motor?	BTL1	Remembering
2.	List the application of various types of DC Motor.	BTL1	Remembering
3.	List the merits and demerits of Swinburne's test.	BTL1	Remembering
4.	Define Speed regulation of DC Motor.	BTL1	Remembering
5.	Why commutator is employed in d.c.machines?	BTL1	Remembering
6.	When you will say the motor is running at base speed?	BTL1	Remembering

7.	Summarize the different techniques used to control the		
/.	speed of DC Shunt motor.	BTL2	Understanding
8.	Describe the torque equation of a DC Motor.	BTL2	Understanding
9.	Give the advantages and disadvantages of Flux control method?	BTL2	Understanding
10.	Express the voltage equation of DC Motor.	BTL2	Understanding
11.	Demonstrate How to reverse the direction of rotation of DC Motor?	BTL3	Applying
12.	Show at what load does the efficiency is maximum in DC Shunt Machines.	BTL3	Applying
13.	Demonstrate How you will change the direction of rotation of a DC Motor.	BTL3	Applying
14.	Point out why the Starters necessary for starting DC Motors?	BTL4	Analysing
15.	What will happen to the speed of a dc motor when its flux approaches to zero?	BTL4	Analysing
16.	Explain why Swinburne's test cannot be performed on DC Series Motor.	BTL4	Analysing
17.	Criticize "belt drive not suitable for DC Series Motor why?"	BTL5	Evaluating
18.	Explain the significance of back emf in a DC Motor?	BTL5	Evaluating
19.	Explain the function of no-volt release in a Three- point starter?	BTL6	Creating
20.	Mention the effects of differential compounding and cumulatively compound on the performance of DC Compound motor.	BTL6	Creating
	PART - B		
1.	With neat diagram explain the principle, construction and working of DC Motor and its characteristics. (13)	BTL1	Remembering
2.	Describe briefly the various methods of controlling the speed of a DC Shunt Motor and bring out their merits and demerits. Also, state the situations where each method is suitable. (13)	BTL1	Remembering
3.	Describe Plugging, dynamic and regenerative braking in DC Motor. (13)	BTL1	Remembering
4.	A 230 volts DC Shunt motor on no-load runs at a speed of 1200RPM and draw a current of 4.5 Amperes. The armature and shunt field resistances are 0.3 ohm and 230 ohms respectively. Calculate the back EMF induced and speed, when loaded and drawing a current of 36 Amperes. (13)	BTL3	Applying
5.	Discuss why starting current is high at the moment of starting a DC Motor? Explain the method of limiting the starting current in DC Motors and also various methods of speed control. (13)	BTL2	Understanding
6.	With neat sketch explain three point starter to start the DC Shunt Motor. (13)	BTL4	Analysing
7.	A DC Series Motor runs at 500 rpm on 220 V supply drawing a current of 50 A. The total resistance of the machine is 0.15Ω , calculate the value of the extra resistance to be connected in series with the motor	BTL3	Applying

	circuit that will reduce the speed to 300 rpm. The load torque being then half of the previous to the current. (13)		
8.	(i) A 500V DC Shunt Motor running at 700 rpm takes an armature current of 50A. Its effective armature resistance is 0.4Ω . What resistance must be placed in series with the armature to reduce the speed to 600 rpm, the torque remaining constant? (7)	BTL4	Analysing
	(ii) Explain briefly the merits and demerits of Hopkinson's test? (6)	BTL4	Analysing
9.	Explain the different methods of excitation and characteristics of a DC Motors with suitable diagrams.(13)	BTL4	Analysing
10.	A 400 Volts DC Shunt Motor has a no load speed of 1450 RPM, the line current being 9 Amperes. At full loaded condition, the line current is 75 Amperes. If the shunt field resistance is 200 Ohms and armature resistance is 0.50hm. Evaluate the full load speed. (13)	BTL5	Evaluating
11.	With the help of neat circuit diagram, explain Swinburne's test and Hopkinson's Test. derive the relations for efficiency (Both for generator and Motor). (13)	BTL1	Remembering
12.	A 4pole DC series motor has 944 wave connected armature conductors. At a particular load, the flux per pole is 0.04wb and the total torque developed is 260 N-m. Calculate the line current taken by the motor and the speed at which it will run with an applied voltage of 500V. The total motor resistance is 3Ω . (13)	BTL6	Creating
13.	Explain the construction, principle, working and equivalent circuit of PMDC Motor. (13)	BTL2	Understanding
14.	A 440 V D.C. shunt motor takes 4A at no load. Its armature and field resistances are 0.4 ohms and 220 ohms respectively. Estimate the kW output and efficiency when the motor takes 60A on full load.	BTL4	Analysing
	PART - C		
1.	Determine developed torque and shaft torque of 220V, 4 pole series motor with 800 conductors wave connected supplying a load of 8.2kW by taking 45A from the mains. The flux per pole is 25mWb and its armature circuit resistance is 0.6 ohm. (8) (b) In DC Motor explain the speed versus torque characteristics of DC Motor (i) DC Series Motor (ii) DC Shunt Motor. (7)	BTL6	Creating
2.	 (a) What is meant by Braking of Electric Motor? Explain the following types of Electrical Braking (i) Regenerative Braking (ii) Dynamic or Rheostatic Braking (iii) Plugging or Reverse Braking. (8) (b) Explain the different methods for speed control of DC Motor (i) Armature Control (ii) Field Control. (7) 	BTL5 BTL6	Evaluating
э.	In a Hopkinson's test on a pair of 500V, 100kW shunt	DILU	Creating

	generators, the following data was obtained: Auxiliary supply: 30A at 500V Generator output current: 200A Field Currents: 3.5A (Generator) and 1.8A (Motor). Armature circuit resistances: 0.075Ω each machine. Voltage drop at the brushes: 2V (each machine). Calculate the efficiency of the machine acting as a generator. (15)		
4.	A 220 V, 22 A, 1000 rpm dc shunt motor has armature circuit resistance of 0.1 ohm and field resistance of 100 ohm. Calculate the value of additional resistance to be inserted in the armature circuit in order to reduce the speed to 800 rpm. Assume the load torque to be (i) proportional to the speed and (ii) proportional to square of the speed (15)	BTL5	Evaluating