DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY Mamalapuram Chennai

DEPARTMENT OF

ELECTRICAL AND ELECTRONICS ENGINEERING

QUESTION BANK

V SEMESTER

EE6501-Power system Analysis

Regulation – 2013

Academic Year 2018-19

DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERRING

OUESTION BANK

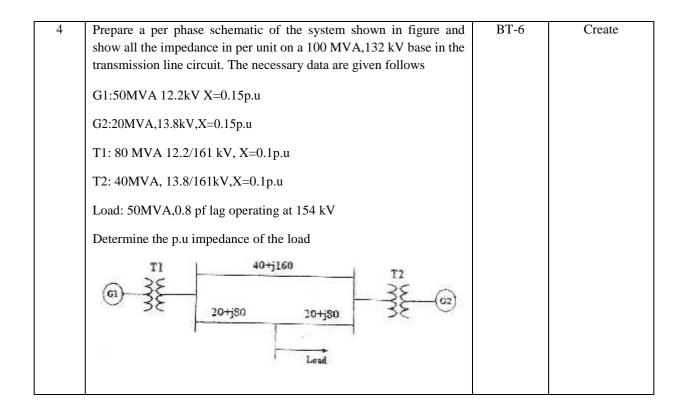
SUBJECT : EE6501-Power system Analysis

SEM / YEAR: V SEMESTER / ACADEMIC YEAR 2018-2019

UNIT I -INTRODUCTION

Need for system planning and operational studies – basic components of a power system.-Introduction to restructuring - Single line diagram – per phase and per unit analysis – Generator - transformer – transmission line and load representation for different power system studies.- Primitive network - construction of Y-bus using inspection and singular transformation methods – z-bus.

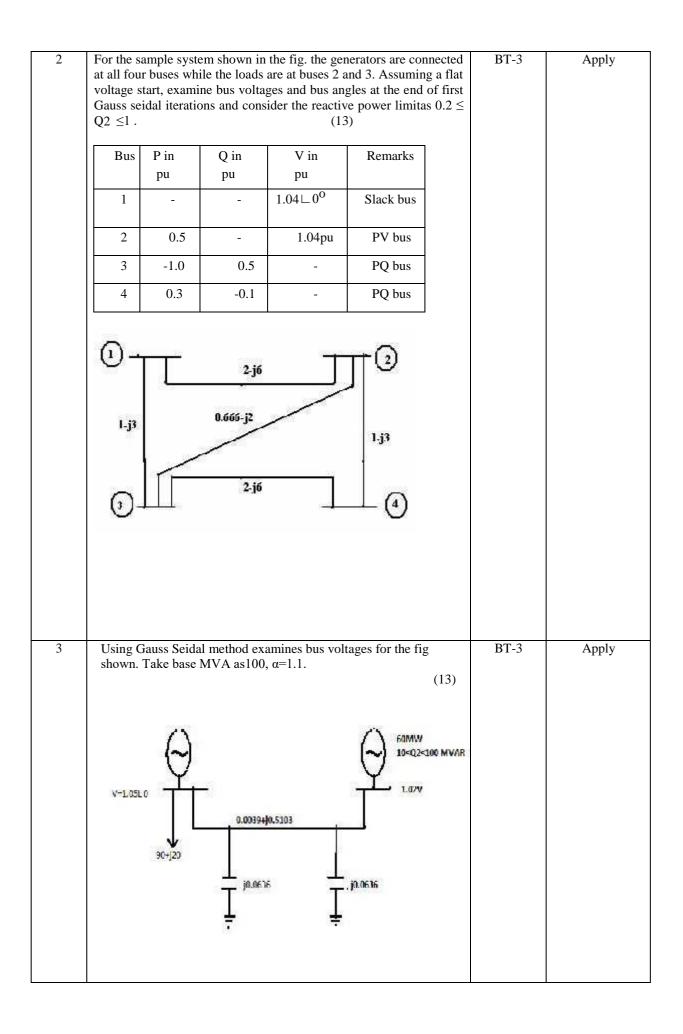
	PART - A		
Q.No	Questions	BT Level	Competence
1	Mention the requirement of planning the operation of power system	BT-1	Remember
2	Define per unit value of an electrical quantity and write equation for	BT-2	Understand
	base impedance for three phase power system		
3	Define bus admittance matrix, bus impedance matrix?	BT-1	Remember
4	A generator rated 25MVA, 11KV has a reactance of 15%. Calculate its p.u. reactance for a base of 50MVA and 10KV	BT-6	Create
5	What is single line diagram	BT-2	Understand
6	Prepare the single phase equivalent circuit of three winding transformer	BT-3	Apply
7	Point out the approximations made in impedance diagram?	BT-4	Analyze
8	Write equation for per unit impedance if change base occurs	BT-3	Apply
9	What is the need of base values	BT-1	Remember
10	Contrast the π circuit representation of a transformer with off – nominal ratio ' α '	BT-4	Analyze
11	What are the function of modern power system	BT-2	Understand
12	How are the loads are represented in the reactance and impedance diagram	BT-4	Analyze
13	Summarize the functions of power system analysis?	BT-2	Understand
14	Examine the applications of Y-bus and Z-bus matrix?	BT-5	Evaluate
15	Define restructure power system?	BT-1	Remember
16	Define off nominal transformer ratio?	BT-1	Remember
17	Define primitive network?	BT-1	Remember
18	Order the methods available for forming bus impedance matrix	BT-5	Evaluate
19	Distinguish bus admittance matrix is preferred in load flow?	BT-3	Apply
19			


1			TT. 1. (1
	The single line diagram of a simple power system is shown in Fig. The rating of the generators and transformers are given below: Generator 1: 25MVA, 6.6KV, X=0.2p.u Generator 2: 5MVA, 6.6KV, X=0.15p.u Generator 3: 30MVA, 13.2KV, X=0.15p.u Transformer1: 30MVA, 6.9 Δ /115Y KV, X=10% Transformer2: 15MVA, 6.9 Δ /115Y KV, X=10% Transformer3: Single phase units each rated 10MVA, 6.9/69 KV, X=10% Examine the impedance diagram and mark all values in p.u choosing a base of 30MVA, 6.6KV in the generator 1 circuit. (13)	BT-2	Understand
2	Examine the reactance diagram for the power system shown in fig. Neglect resistance and use a base of 100MVA, 220kV in 50K Ω line. The ratings of the generator motor and transformer are give below. (13) $f(x) = \int_{X} \int_{$	BT-3	Apply

3	the imp transm Given G1 :	e a per phase pedance in p ission line ci as follows. 50MVA, 12 20MVA, 13	BT-2	Understand			
		MVA, 12.2					
	LOAI)MVA, 13.8/ D: 50MV		r factor lag operati	ng at 154KV.		
		the p.u imp	-	• •	(13)		
		T1	40+j1	160 J T2			
	0	25			c (G2)		
	(J)-		20+j180 2	0+j180 >·			
	6.85		F				
4	(i)	The parame	ters of a fou	r system are as un	der:	BT-3	Apply
	Line No.	Line starting bus					
	1	1	bus 2	0.2+j0.8	j0.02		
	2	2	3	0.3+j0.9	j0.03		
	3	2	4	0.25+j1.0	j0.04		
	4	3	4	0.2+j0.8	j0.02		
	5	1	3	0.1+j0.4	j0.01		
	Point ou	t the Networ					
	(ii) Gene assumpt		npedance an	d reactance diagra	m? Explain with (3).		
~	(1) -	<u> </u>	· · · · · ·		. *		A 1
5		Discuss the p s? Prove Yb	BT-4	Analyze			
		sformation?					
	ii)Es	timate the Y					
		Element					
		2		j1.0			
		2-3		j0.4			
		2-4 3-4		j0.2 j0.2			
		3-1		j0.2 j0.8			
		4-5		j0.08	(6)		
6		winding trai	nsformer is		edance of a two the calculation is voltage side (7)	BT-1	Remember
	(ii)	Explain the ratio.					

7	Give p.u impedance d i a g r a m o f the power system of figure.	BT-4	Analyze
	Choose base quantities as 15 MVA and 33 KV. Generator: 30 MVA, 10.5 KV, $X'' = 1.6$ ohms. Transformers T1 & T2: 15 MVA, 33/11 KV, $X = 15$ ohms referred to HV Transmission line: 20 ohms / phase. Load: 40 MW, 6.6 KV, 0.85 lagging p.f. (13)		
	G T_1 T_2 load		
8	Draw the p.u impedance diagram for the system shown in figure. Choose Base MVA as 100 MVA and Base KV as 20 KV. (13)	BT-5	Evaluate
9	Explain in detailed the three major restructure Models in power system (13)	BT-1	Remember
10	(i).Explain the structure of modern power system with neat sketch. (7)	BT-1	Remember
11	(ii).Describe about representation of loads. (6) (i)Estimate the per unit impedance diagram shown in fig below. \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	BT-1 BT-6	Create
	Generator1: 30MVA, 10.5KV, X'' =1.6 ohms Generator2: 15MVA, 6.6KV, X'' =1.2 ohms Generator3: 25MVA, 16.6KV, X''=0.56ohms Transformer $T_1(3\Phi)$:15MVA,33/11 KV,X=15.2 HT Side Transformer $T_2(3\Phi)$:15MVA,33/6.2 KV,X=16 HT Side Transmission line: 20.5 Ω /phase Load A: 15MW, 11KV, 0.9 LPF Load B: 40MW, 6.6KV, 0.85 LPF (7) (ii). Express the per unit equivalent circuit of single phase transformer? (6)		

12	A 90 MVA 11KV 3 Φ generator has a reactance if 25%.The generator supplies two motors through transformer and transmission line as shown in fig. The transformer T1 is a 3 Φ transformer, 100 MVA, 10/132 KV, 6% reactance. The transformer T2 is composed of 3 single phase units each rated, 300 MVA, 66/20 KV, with 5% reactance. The connection of T1 and T2 are shown fig. The motors are rated at 50 MVA and 400 MVA both 10KV and 20% reactance. Taking the generator rating as base. Show reactance diagram. Reactance of the line is 100 Ω . (13)	BT-5	Evaluate
	G BELINE 38 CY AY, YA MA		
13	Form Y bus of the test system shown in figure using singular transformation method. The impedance data is given in Table Take (1) as reference node (13)	BT-3	Apply
14	 (i) The sub transient reactance of a 500MVA, 18kV generator is 0.25p.u on its rating. It is connected to a network through a 20/400kV transformer. Find out the sub transient reactance of the generator on a base of 100MVA and 20kV (ii) A transformer interconnects a strong 400kV and weaker 200kV system and is provided with a tap changer on the 400 kV side. What is the effect of setting the tap such that the voltage ratio is 410/200kV on the 400 and 200kV sides (iii) Draw the pu reactance diagram of a three winding transformer whose three phase rating are: primary wye-grounded 15MVA,66kV Secondary (S) wye-grounded,10MVA 13.2 kV tertiary (t) delta connected 5 MVA 2.3 kV. Mark the appropriate value of the impedance are ZPS=7% ON 15MV;ZPT=9% on 15 MVA and 66KV ST=8% ON 10MVA and 13.2kV 	BT-2	Understand


	PART - C		
1	Examine modelling of transformer, transmission line, loads and	BT-5	Evaluate
	generators for a load flow, short circuit and stability studies (15)		
2		BT-5	Evaluate
2	The parameter pf a 4 bus system are as under	D1-5	Lvaluate
	Line Starting Line Ending Line impedance Line charging admittance		
	Bus bus		
	1 2 0.2+j0.8 j0.02		
	2 3 $0.3+j0.9$ $j0.03$		
	2 4 0.25+j1.0 j0.04		
	3 4 0.2+j0.8 j0.02		
	1 3 0.1+j0.4 j0.01		
	Draw the network and find admittance matrix (15)		
3	Draw the reactance diagram for the power system shown in figure. The ratings of generator, motor and transformers are given below. Neglect resistance and use a base of 50MVA, 13.8kV in the 40 ohm line	BT-6	Create
	Generator G2: 40MVA 18kV,X"=20%		
	Synchronous motor:30MVA,13.8kV,X"=20%		
	3phase Y-Y Transformer:20MVA 13.8/20kV, X=10%		

UNIT II- POWER FLOW ANALYSIS

Importance of power flow analysis in planning and operation of power systems - statement of power flow problem - classification of buses - development of power flow model in complex variables form - iterative solution using Gauss-Seidel method - Q-limit check for voltage controlled buses – power flow model in polar form - iterative solution using Newton-Raphson method.

			PART - A							
Q.No	Questions	BT Level	Competence							
1	Mentioned the various types of buses in power system with specified	BT-1	Remember							
	quantitates for each bus									
2	What is the need for slack bus in power flow analysis	BT-4	Analyze							
3	When will the generator bus is treated as load bus	BT-2	Understand							
4	Extend the acceleration factor in Gauss Seidal Method	BT-5	Evaluate							
5	Prepare the advantages and disadvantages of Gauss Seidal method	BT-3	Apply							
6	What is the need for load flow analysis	BT-1	Remember							
7	Associate with load flow studies are important for planning the	BT-2	Understand							
	existing system as well as the future expansion									
8	Relate why bus admittance matrix is used in Gauss Seidal instead of	BT-3	Apply							
	bus impedance matrix									
9	Show the general power flow equation	BT-4	Analyze							
10	Describe the need for power flow study	BT-1	Remember							
11	Compare GSM and NRM with respect to number of iterations taken	BT-4	Analyze							
	for convergence and memory requirement									
12	Discuss the effect of acceleration factor in the load flow solution	BT-2	Understand							
	algorithm									
13	What are the disadvantage NR method	BT-3	Apply							
14	What are the advantage FDLF method	BT-1	Remember							
15	Compare GS and NR method.	BT-5	Evaluate							
16	Explain what do you mean by flat voltage start	BT-6	Create							
17	Define bus incidence matrix	BT-1	Remember							
18	Tabulate practical load flow problem	BT-6	Create							
19	What is jocobian matrix	BT-2	Understand							
20	Define voltage controlled bus and load bus	BT-1	Remember							
	PART - B									
1	Prepare the load flow algorithm using Gauss Seidal method with	BT-1	Remember							
-	flow chart and discuss the advantages of the method. (13)	D1-1								

4	In the power system network shown in figure, bus 1 is slack bus with V ₁ = 1.0 + j0.0 per unit and bus 2 is a load bus with S ₂ = 280MW = j60MVAR. The line impedance on a base of 100MVA is Z = 0.02 + j0.04 per unit. Using Gauss – Seidal method, give V ₂ .Use an initial estimate of V ₂ ⁽⁰⁾ = 1.0 + j0.0 and perform four iterations. Also find S ₁ and the real, reactive power loss in the line, assuming that the bus voltages have converged. (13) $S_{1} = \frac{Z_{12} = 0.02 + j0.04}{1}$	BT-6	Create
5	The system data for a load flow problem are given in table.(i) Compute Y bus.(ii) Solve bus voltages at the end of first iteration by G-Smethod by taking $\alpha = 1.6$. (16)LineBusAdmittancenocodein pu11-221-31-j432-30.6-j2.6	BT-3	Apply
6	Fig shown below a three bus system Bus 1: slack bus V= $1.05 \ 0$ p.u. Bus 2:PV bus $ =1.0 \ p.u, P_e=3 \ p.u.Bus 3:PQ \ bus P_L=4 \ p.u, Q_L=2p.u.$ examine one iteration of load flow solution by Gauss seidel method. neglect limits on reactive power generation? (13)	BT-4	Analyze

7	line admi bus data a	ttance of are giver 3 after fi	n 100MVA base a n in table. form Y rst iteration using	are indicated of bus and Give the	e relevant per unit in the diagram and ie voltage at bus 2 method. Take the (13)	BT-5	Evaluate
	Bus Number	Туре	Generation P _G Q _G (MW) (MVAR)	Load P _G QG (MW) (MVAR)	Bus voltage V(p.u) δ deg		
	1 2	Slack PQ	- 25 15	0 0 50 25	1.02 0		
	3	PQ	0 0	60 30			
8	Explain the load flow		of buses and deriv	e the power flo	ow equations in (13)	BT-1	Remember
9	elements	of the su I flow stu	xpressions for the b- matrices J1 , J2 idy on power syste	2, J3 and J4 fo	or carrying	BT-2	Understand
10		e the slad	oad flow solutio ck bus complex		e how do you ction and system (13)	BT-1	Remember
11	(i) (ii) (iii) (ii	Give the syste Give the meth	em for load flow s advantages and lin	tudies mitations of No	buses in a power (5) wton Raphson (5)	BT-1	Remember

	system with generation at buses at 1 and 2.the voltage at bus 1 is V=1+j0.0 V per unit. Voltage magnitude at bus 2 is fixed at 1.05 p.u. with a real power generation of 400 MW. A Load consisting of 500MW and 400 MVAR base. For the purpose of hand calculation, line resistance and line charging susceptances are neglected $ \frac{1}{y_{12} = -j40} \qquad P_2 = 400 \text{ MW} $ $ \frac{y_{13} = -j20}{y_{23} = -j20} \qquad P_2 = 400 \text{ MW} $ Slack Bus $V_1 = 1.020$ $y_{23} = -j20$ $V_2 = 1.05$ Slack Bus $V_2 = 1.05 + j0.0$ and $V_3^0 = 1.05 + j0.0$, and keeping $ V_2 = 1.05$ p.u., examine the phasor values v_2 and v_3 .perform two iterations. (13)		
13	Derive N-R method of load flow algorithm and explain the implementation of this algorithm with the flowchart. (13)	BT-2	Understand
14	(i) Derive the static load flow equations of n-bus system.(7)(ii) Compare GSLF, NRLF Methods.(6)	BT-4	Analyze
	PART - C		
1	Draw and explain the step by step procedure of load flow solutions for the Gauss seidal method when PV buses are present (15)	BT-6	Create
2	The Figure shows the one line diagram of a simple 3 bus system with generation at buses 1 and 3. Line impedance are marked in p.u on a 100 MVA base. Determine the bus voltages at the end of second iteration using Gauss seidal method (15) $G_1 = 0.02 \pm 0.04$ (15) $G_1 = 0.02 \pm 0.04$ (15) $G_1 = 0.01 \pm 0.03$ (15) $G_1 = 0.01 \pm 0.03$ (15) $G_2 = 0.02 \pm 0.025$ (15) $G_1 = 0.01 \pm 0.03$ (15) $G_2 = 0.0125 \pm 0.025$ (15) $G_3 = 0.0125 \pm 0.025$ (15) $G_1 = 0.01 \pm 0.03$ (15) $G_2 = 0.0125 \pm 0.025$ (15) $G_3 = 0.0125 \pm 0.025$ (15) $G_1 = 0.0125 \pm 0.025$ (15) $G_2 = 0.0125 \pm 0.025$ (15) $G_3 = 0.0125 \pm 0.025$ (15)	BT-3	Apply

3	Consider Y _{inter} =	the power sy -j12 j8 j8 -j12 j4 j4	$\begin{bmatrix} j^{*}\\ j^{*}\\ j^{*}\\ -j^{*} \end{bmatrix}$	h follow	ing data				BT-5	Evaluate
			Gene	ration	Load	1	Vo	oltage		
	Bus No	Туре	Р	Q	Р	Q	Mag.	Ang.		
	1	Slack	-	-	-	-	1.0	0°		
	2	P-V	5.0	-	0	-	1.05	-		
	3	P-Q	0	0	3.0	0.5	-	-		
	With a fl	that the bus 2 at start, perfo wton Raphso	orm the fi	rst iterati			-			
4	flow sol	eat flow char lving using contain all typ	Newton	Raphsor					BT-5	Evaluate

UNIT III FAULT ANALYSIS – BALANCED FAULTS

Importance of short circuit analysis - assumptions in fault analysis - analysis using Thevenin's theorem - Z-bus building algorithm - fault analysis using Z-bus – computations of short circuit capacity, post fault voltage and currents

PART - A								
Q.No	Questions	BT Level	Competence					
1	Examine the order of severity and symmetrical fault?	BT-4	Analyze					
2	Define short circuit capacity of power system	BT-1	Remember					
3	Show the oscillation of short circuit current when an unloaded generator is subjected to a symmetrical fault clearly marking sub-	BT-3	Apply					
4	Discuss the prefault currents are usually neglected in fault computation?	BT-4	Analyze					
5	What is meant by fault calculations	BT-2	Understand					
6	Point out the various types of shunt and series faults	BT-5	Evaluate					
7	Distinguish between symmetrical and unsymmetrical short circuits.	BT-5	Evaluate					
8	Define bolted fault?	BT-1	Remember					
9	The Z bus method is very suitable for fault studies on large system infer?	BT-4	Analyze					
10	Summarize two approximations made in short circuit studies	BT-1	Remember					
11	How do Short circuits occur in power system and Summarize two objective of Short circuit analysis?	BT-3	Apply					
12	Discover the main differences in representation of power system for load flow and short circuit studies.	BT-2	Understand					
13	Compose, What is meant by doubling effect?	BT-2	Understand					
14	Explain the need for fault analysis in power system?	BT-6	Create					
15	Explain the sub transient reactance and transient reactance?	BT-1	Remember					
16	Summarize the reason for transients during short circuit?	BT-6	Create					
17	State and explain symmetrical fault	BT-3	Apply					
18	Define synchronous reactance, transient reactance, sub transient reactance	BT-1	Remember					
19	Define fault level.	BT-1	Remember					
20	Summarize the applications of short circuit analysis	BT-2	Understand					
	PART - B							
1	Explain the step by step procedure for systematic fault analysis for a three phase fault using bus impedance matrix. (13)	BT-1	Remember					
2	A generator is connected through a transformer to a synchronous motor. The sub transient reactance of generator and motor are 0.15 p.u and 0.35p.u respectively. The leakage reactance of the transformer is 0.1 p.u. All the reactance are calculated on a common base. A three phase fault occurs at the terminal of the motor when the terminal voltage of the generator is 0.9p.u. The output current of generator is 1p.u and 0.8 pf leading. Find the sub transient current in p.u in the fault, generator and motor. Use the terminal voltage of generator as reference vector. (1 3)	BT-2	Understand					

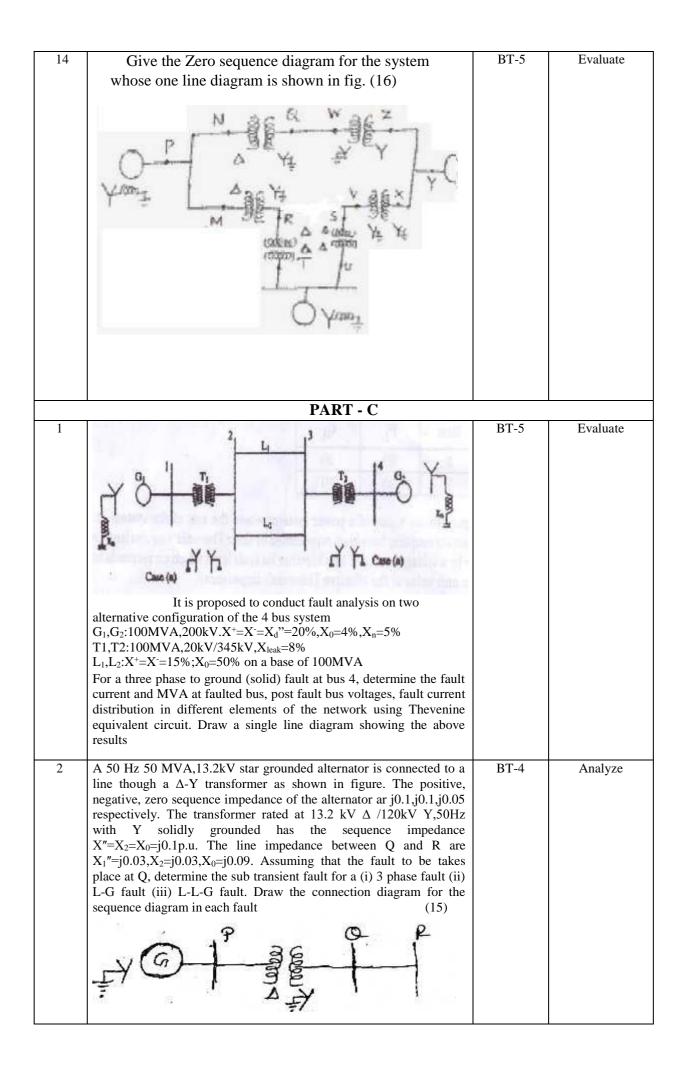
3	Two synchronous motor are connected to the bus of large system through a short transmission line shown in fig. The rating of the various components is given. MOTOR (each): 1 MVA, 440V, 0.1 p.u. Transient reactance line: 0.05Ω (reactance) Large system: Short circuit MVA at its bus at 440V is 8 When the motor are operating at 400V, examine the short circuit current (symmetrical) fed into a three phase fault at motor bus. (13)	BT-5	Evaluate
4	Explain the step by step procedure to find the fault current of three phase symmetrical fault by using the venin's theorem.(13)	BT-1	Remember
5	For the radial network shown in figure , a 3 phase fault occurs at point F. examine the fault current. (13) G1 IOMVA,25% IIKV IOMVA,12.5% T1 OVOO IOMVA,12.5% T1 OVOO IOMVA,12.5% T1 OVOO IOMVA,12.5% T2 OVOO IOMVA,25% T2 OVOO IOMVA,8.7% COOO 6.6KV Feeder F $Z=0.5+j0.15$ Ω Fault	BT-4	Analyze

-			
6	A symmetrical fault occurs on bus 4 of system shown in figure; examine the fault current, post fault voltages, line flows. Generator G_1, G_2 :100MVA,20KV,X1=15%.	BT-1	Remember
	Transformer T ₁ , T ₂ :, X _{leak} =9%, Transmission line L ₁ ,L ₂ : X1=10%		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	L (13)		
7	Examine the bus impedance matrix using bus building algorithm for the given network.	BT-2	Understand
	$ \begin{array}{c} $		
8	. (i)Determine Bus Impedance matrix by Bus Building Algorithm.(6)	BT-3	Apply
	j0.2 j0.2 j1.0 j1.0 j0.2 j1.25		
	Reference bus		
	ii) Point out Bus impedance matrix. Describe the construction of Bus impedance matrix ZBus using Bus building algorithm for lines without mutual coupling .(6)	BT2	Understand

9		BT-2	Understand
A symmetrical calcula	rical fault occurs on bus 4 of system through 14 pu in figure. Using bus building algorithm ate the fault current, post fault voltages, line flows. ., G 2 : 1 0 0 M V A, 2 0 k V, X + = 1 5 %	h	
	er T1,T2: Xleak=9%		
	on line L1,L2, $X^+=10\%$. (13)		
connected ohm/phase/K is rated at 2 Calculate the under no lo	5MVA, 6.6 KV alternators with a reactance of 8% to a feeder of series impedance $(0.12+j0.4)$ Km through a step up transformer. The transform 3 MVA, 6.6 KV/33KV and has a reactance of 5% the fault current supplied by the generator operation bad with a voltage of 6.9 KV when a three phase fault occurs at a point 15Km along the feeder.(13)	8) er %. ng	Apply
of a 3Φ de rated 60,00 11KV.each $X_d = 25\%$.tl delta/66KV the voltage transformer between the		s ,, f - l, e tt	Evaluate

12	A generator transformer unit is connected to a line circuit	BT-4	Analyze
	A generator transformer unit is connected to a line circuit breaker.the unit rating are:	D1-4	ranary20
	Generator: 10MVA, 6.6KV; Xd"=0.1 p.u, Xd'=0.2 p.u and		
	X _d =0.8 p.u		
	Transformer:10mva,6.9/33KV,X=0.08 p.u,		
	The system is operating on no load at a line voltage of 30 KV,		
	when a 3Φ fault occurs on the line jest beyond the circuit breaker.		
	Solve		
	(i) The initial symmetrical rms current in the breaker.		
	(ii) The maximum possible dc offset current in the breaker.		
	(iii)the momentary current rating of the breaker		
	(iv) the current to be interrupted by the breaker and the interrupting		
	KVA		
12	(v) the sustained short circuit current in the breaker. (13)		A 1
13	A 25,000 KX/A 12,8 LX/ segmenter with X? 1 150/ is segmented	BT-4	Analyze
	A 25,000 KVA, 13.8 kV generator with $X''d = 15\%$ is connected		
	through a transformer to a bus which supplies four identical motors		
	as shown in Fig. The sub transient reactance X"d of each motor is		
	20% on a base of 5000 KVA, 6.9 kV. The three-phase rating of the		
	transformer is 25,000 KVA, 13.8/6.9 kV, with a leakage reactance		
	of 10%. The bus voltage at the motors is 6.9 kV when a three-		
	phase fault occurs at point p. for the fault specified, Point out		
	(i) The sub transient current in the fault (ii) the sub transient		
	current in breaker A and (iii) the symmetrical short-circuit		
	interrupting current in the fault and in breaker A. (13)		
14	With help of detailed flow chart, explain how symmetrical fault can	BT-1	Remember
14	With help of detailed flow chart, explain how symmetrical fault can be analysed using Z_{bus} (13)	BT-1	Remember
14		BT-1	Remember
14		BT-1	Remember
14	be analysed using Z _{bus} (13) PART - C A 3 phases 5 MVA, 6.6 kV alternator with a reactance of 8% is	BT-1 BT-4	Remember Analyze
	be analysed using Z _{bus} (13) PART - C		
	be analysed using Z _{bus} (13) PART - C A 3 phases 5 MVA, 6.6 kV alternator with a reactance of 8% is connected to a feeder series impedance (0.12+j0.48) ohm/phase/km through a step up transformer. The transformer rated at 3 MVA, 6.6		
	be analysed using Z _{bus} (13) PART - C A 3 phases 5 MVA, 6.6 kV alternator with a reactance of 8% is connected to a feeder series impedance (0.12+j0.48) ohm/phase/km		
	be analysed using Z _{bus} (13) PART - C A 3 phases 5 MVA, 6.6 kV alternator with a reactance of 8% is connected to a feeder series impedance (0.12+j0.48) ohm/phase/km through a step up transformer. The transformer rated at 3 MVA, 6.6 kV/33kV and has reactance of 5%.Determine the fault current supplied by the generator operating under no load with a voltage of		
	be analysed using Z _{bus} (13) PART - C A 3 phases 5 MVA, 6.6 kV alternator with a reactance of 8% is connected to a feeder series impedance (0.12+j0.48) ohm/phase/km through a step up transformer. The transformer rated at 3 MVA, 6.6 kV/33kV and has reactance of 5%.Determine the fault current supplied by the generator operating under no load with a voltage of 6.9 kV, when a 3 phases symmetrical fault occurs at a point 15km		
	be analysed using Z _{bus} (13) PART - C A 3 phases 5 MVA, 6.6 kV alternator with a reactance of 8% is connected to a feeder series impedance (0.12+j0.48) ohm/phase/km through a step up transformer. The transformer rated at 3 MVA, 6.6 kV/33kV and has reactance of 5%.Determine the fault current supplied by the generator operating under no load with a voltage of		
	be analysed using Z _{bus} (13) PART - C A 3 phases 5 MVA, 6.6 kV alternator with a reactance of 8% is connected to a feeder series impedance (0.12+j0.48) ohm/phase/km through a step up transformer. The transformer rated at 3 MVA, 6.6 kV/33kV and has reactance of 5%.Determine the fault current supplied by the generator operating under no load with a voltage of 6.9 kV, when a 3 phases symmetrical fault occurs at a point 15km		
1	be analysed using Z _{bus} (13) PART - C A 3 phases 5 MVA, 6.6 kV alternator with a reactance of 8% is connected to a feeder series impedance (0.12+j0.48) ohm/phase/km through a step up transformer. The transformer rated at 3 MVA, 6.6 kV/33kV and has reactance of 5%.Determine the fault current supplied by the generator operating under no load with a voltage of 6.9 kV, when a 3 phases symmetrical fault occurs at a point 15km along the feeder. (15)	BT-4	Analyze
	be analysed using Z _{bus} (13) PART - C A 3 phases 5 MVA, 6.6 kV alternator with a reactance of 8% is connected to a feeder series impedance (0.12+j0.48) ohm/phase/km through a step up transformer. The transformer rated at 3 MVA, 6.6 kV/33kV and has reactance of 5%.Determine the fault current supplied by the generator operating under no load with a voltage of 6.9 kV, when a 3 phases symmetrical fault occurs at a point 15km along the feeder. A 3 phase transmission line operating at 33kV and having resistance		
1	be analysed using Z_{bus} (13) PART - C A 3 phases 5 MVA, 6.6 kV alternator with a reactance of 8% is connected to a feeder series impedance (0.12+j0.48) ohm/phase/km through a step up transformer. The transformer rated at 3 MVA, 6.6 kV/33kV and has reactance of 5%.Determine the fault current supplied by the generator operating under no load with a voltage of 6.9 kV, when a 3 phases symmetrical fault occurs at a point 15km along the feeder. (15) A 3 phase transmission line operating at 33kV and having resistance of 5 Ω and reactance of 20 Ω is connected to the generating station	BT-4	Analyze
1	be analysed using Z_{bus} (13) PART - C A 3 phases 5 MVA, 6.6 kV alternator with a reactance of 8% is connected to a feeder series impedance (0.12+j0.48) ohm/phase/km through a step up transformer. The transformer rated at 3 MVA, 6.6 kV/33kV and has reactance of 5%.Determine the fault current supplied by the generator operating under no load with a voltage of 6.9 kV, when a 3 phases symmetrical fault occurs at a point 15km along the feeder. (15) A 3 phase transmission line operating at 33kV and having resistance of 5 Ω and reactance of 20 Ω is connected to the generating station through 15,000 KVA step up transformers. Connected to the bus bar	BT-4	Analyze
1	be analysed using Z_{bus} (13) PART - C A 3 phases 5 MVA, 6.6 kV alternator with a reactance of 8% is connected to a feeder series impedance (0.12+j0.48) ohm/phase/km through a step up transformer. The transformer rated at 3 MVA, 6.6 kV/33kV and has reactance of 5%.Determine the fault current supplied by the generator operating under no load with a voltage of 6.9 kV, when a 3 phases symmetrical fault occurs at a point 15km along the feeder. (15) A 3 phase transmission line operating at 33kV and having resistance of 5 Ω and reactance of 20 Ω is connected to the generating station through 15,000 KVA step up transformers. Connected to the bus bar are two alternators one of 10,000KVA with 10% reactance and	BT-4	Analyze
1	be analysed using Z_{bus} (13) PART - C A 3 phases 5 MVA, 6.6 kV alternator with a reactance of 8% is connected to a feeder series impedance (0.12+j0.48) ohm/phase/km through a step up transformer. The transformer rated at 3 MVA, 6.6 kV/33kV and has reactance of 5%.Determine the fault current supplied by the generator operating under no load with a voltage of 6.9 kV, when a 3 phases symmetrical fault occurs at a point 15km along the feeder. (15) A 3 phase transmission line operating at 33kV and having resistance of 5 Ω and reactance of 20 Ω is connected to the generating station through 15,000 KVA step up transformers. Connected to the bus bar are two alternators one of 10,000KVA with 10% reactance and another of 5000 KVA with 7.5% reactance. Draw the single line	BT-4	Analyze
1	be analysed using Z_{bus} (13) PART - C A 3 phases 5 MVA, 6.6 kV alternator with a reactance of 8% is connected to a feeder series impedance (0.12+j0.48) ohm/phase/km through a step up transformer. The transformer rated at 3 MVA, 6.6 kV/33kV and has reactance of 5%.Determine the fault current supplied by the generator operating under no load with a voltage of 6.9 kV, when a 3 phases symmetrical fault occurs at a point 15km along the feeder. (15) A 3 phase transmission line operating at 33kV and having resistance of 5 Ω and reactance of 20 Ω is connected to the generating station through 15,000 KVA step up transformers. Connected to the bus bar are two alternators one of 10,000KVA with 10% reactance and another of 5000 KVA with 7.5% reactance. Draw the single line diagram and calculate the short circuit KVA for symmetrical fault	BT-4	Analyze
1	be analysed using Z_{bus} (13) PART - C A 3 phases 5 MVA, 6.6 kV alternator with a reactance of 8% is connected to a feeder series impedance (0.12+j0.48) ohm/phase/km through a step up transformer. The transformer rated at 3 MVA, 6.6 kV/33kV and has reactance of 5%.Determine the fault current supplied by the generator operating under no load with a voltage of 6.9 kV, when a 3 phases symmetrical fault occurs at a point 15km along the feeder. (15) A 3 phase transmission line operating at 33kV and having resistance of 5 Ω and reactance of 20 Ω is connected to the generating station through 15,000 KVA step up transformers. Connected to the bus bar are two alternators one of 10,000KVA with 10% reactance and another of 5000 KVA with 7.5% reactance. Draw the single line	BT-4	Analyze
1	be analysed using Z_{bus} (13) PART - C A 3 phases 5 MVA, 6.6 kV alternator with a reactance of 8% is connected to a feeder series impedance (0.12+j0.48) ohm/phase/km through a step up transformer. The transformer rated at 3 MVA, 6.6 kV/33kV and has reactance of 5%.Determine the fault current supplied by the generator operating under no load with a voltage of 6.9 kV, when a 3 phases symmetrical fault occurs at a point 15km along the feeder. (15) A 3 phase transmission line operating at 33kV and having resistance of 5 Ω and reactance of 20 Ω is connected to the generating station through 15,000 KVA step up transformers. Connected to the bus bar are two alternators one of 10,000KVA with 10% reactance and another of 5000 KVA with 7.5% reactance. Draw the single line diagram and calculate the short circuit KVA for symmetrical fault	BT-4	Analyze

3	For the network shown in fig.Find the sub transient current in per unit from generator 1 and in line 1-3 and the voltages at bus 1 and 2 for a three phase fault on bus 3. Assume that no current is flowing prior to the fault and that the pre fault voltage at bus 3 is 1 p.u. Use (i) bus impedance method (ii) network reduction method for calculation (15)	BT-5	Evaluate
4	For the radial network shown in figure 3 phase fault occurs at point F. Determine the fault current and the line voltage at 11.8 kV bus under fault condition	BT-3	Apply


UNIT IV FAULT ANALYSIS – UNBALANCED FAULTS

Introduction to symmetrical components – sequence impedances – sequence circuits of synchronous machine, transformer and transmission lines - sequence networks analysis of single line to ground, line to line and double line to ground faults using Thevenin's theorem and Z-bus matrix.

1 Point out the order of severity and occurrence of different types of fault? BT-1 2 Why the neutral grounding impedance Zn appears as 3Zn in zero sequence equivalent circuit BT-2 3 Point out the sequence network diagram for line to line fault with fault impedance BT-5 4 Evaluate the sequence network diagram for line to ground with fault impedance BT-3 5 Explain the significance of sub transient reactance and transient reactance in short circuit studies BT-1 6 Write boundary conditions for single line to ground faults BT-1 7 Describe the symmetrical component of phase 'a" in ters of the current BT-3 9 Define doubling effect and DC off-set current BT-1 10 Summarize different between sub transient and transient reactance BT-3 11 Explain the features of zero sequence current? BT-3 12 Discuss the symmetrical components of three phase system BT-5 13 Define negative sequence and zero sequence components BT-1 14 Define negative sequence and zero sequence components BT-1 15 Discover the symmetrical components Va1, Va2 and Va0 in terms of unbalanced vectors Va, Vb and Vc. BT-6 16 Write down the e	PART - A				
1 Point out the order of severity and occurrence of different types of fault? BT-1 2 Why the neutral grounding impedance Zn appears as 3Zn in zero sequence equivalent circuit BT-2 3 Point out the sequence network diagram for line to line fault with fault impedance BT-5 4 Evaluate the sequence network diagram for line to ground with fault impedance BT-3 5 Explain the significance of sub transient reactance and transient reactance in short circuit studies BT-1 6 Write boundary conditions for single line to ground faults BT-1 7 Describe the symmetrical component of phase 'a'' in ters of the current BT-3 9 Define doubling effect and DC off-set current BT-1 10 Summarize different between sub transient and transient reactance BT-3 11 Explain the features of zero sequence current? BT-3 12 Discuss the symmetrical components of three phase system BT-5 13 Define negative sequence and zero sequence components BT-1 14 Define short circuit capacity BT-1 15 Discover the symmetrical components Va1, Va2 and Va0 in terms of unbalanced vectors Va, Vb and Vc. BT-6 16 Write down the equation determine symme	Competence	BT Level	Questions	Q.No	
sequence equivalent circuit BT-5 3 Point out the sequence network diagram for line to line fault with fault impedance BT-5 4 Evaluate the sequence network diagram for line to ground with fault impedance BT-3 5 Explain the significance of sub transient reactance and transient reactance in short circuit studies BT-1 6 Write boundary conditions for single line to ground faults BT-1 7 Describe the symmetrical component of phase 'a" in ters of the current BT-3 8 Describe the equation for sub transient and transient internal voltage BT-3 9 Define doubling effect and DC off-set current BT-1 10 Summarize different between sub transient and transient reactance BT-3 11 Explain the features of zero sequence current? BT-3 12 Discuss the symmetrical components of three phase system BT-5 13 Define negative sequence and zero sequence components BT-1 14 Define short circuit capacity BT-1 15 Discover the symmetrical components Va1, Va2 and Va0 in terms of unbalanced current BT-6 16 Write down the equation determine symmetrical currents for un balanced current BT-2 17 <td>Remember</td> <td>BT-1</td> <td>fault?</td> <td></td>	Remember	BT-1	fault?		
fault with fault impedance BT-3 4 Evaluate the sequence network diagram for line to ground with fault impedance BT-3 5 Explain the significance of sub transient reactance and transient reactance in short circuit studies BT-1 6 Write boundary conditions for single line to ground faults BT-1 7 Describe the symmetrical component of phase 'a" in ters of the current BT-3 8 Describe the equation for sub transient and transient internal voltage BT-3 9 Define doubling effect and DC off-set current BT-1 10 Summarize different between sub transient and transient reactance BT-3 11 Explain the features of zero sequence current? BT-3 12 Discuss the symmetrical components of three phase system BT-5 13 Define negative sequence and zero sequence components BT-1 14 Define short circuit capacity BT-1 15 Discover the symmetrical components Va1, Va2 and Va0 in terms of unbalanced vectors Va, Vb and Vc. BT-6 17 What are symmetrical components BT-2 18 Demonstrate the zero sequence network diagram of a delta-delta connected transformer. BT-6 19 In which fault, t	Understand	BT-2	Why the neutral grounding impedance Zn appears as 3Zn in zero sequence equivalent circuit	2	
with fault impedance BT-2 5 Explain the significance of sub transient reactance and transient reactance in short circuit studies BT-2 6 Write boundary conditions for single line to ground faults BT-1 7 Describe the symmetrical component of phase 'a" in ters of the current BT-4 8 Describe the equation for sub transient and transient internal voltage BT-3 9 Define doubling effect and DC off-set current BT-1 10 Summarize different between sub transient and transient reactance BT-3 11 Explain the features of zero sequence current? BT-3 12 Discuss the symmetrical components of three phase system BT-5 13 Define negative sequence and zero sequence components BT-1 14 Define short circuit capacity BT-1 15 Discover the symmetrical components Va1, Va2 and Va0 in terms of unbalanced vectors Va, Vb and Vc. BT-6 16 Write down the equation determine symmetrical currents for un balanced current BT-2 17 What are symmetrical components BT-2 18 Demonstrate the zero sequence network diagram of a delta-delta connected transformer. BT-6 19 In which fault, the n	Evaluate	BT-5		3	
reactance in short circuit studies BT-1 6 Write boundary conditions for single line to ground faults BT-1 7 Describe the symmetrical component of phase 'a" in ters of the current BT-3 8 Describe the equation for sub transient and transient internal voltage BT-3 9 Define doubling effect and DC off-set current BT-1 10 Summarize different between sub transient and transient reactance BT-3 11 Explain the features of zero sequence current? BT-3 12 Discuss the symmetrical components of three phase system BT-1 14 Define negative sequence and zero sequence components BT-1 14 Define short circuit capacity BT-1 15 Discover the symmetrical components Va1, Va2 and Va0 in terms of unbalanced vectors Va, Vb and Vc. BT-6 16 Write down the equation determine symmetrical currents for un balanced current BT-2 17 What are symmetrical components BT-2 18 Demonstrate the zero sequence network diagram of a delta-delta connected transformer. BT-6 19 In which fault, the negative and zero sequence currents are absent? BT-6 20 Develop the connection of sequence netw	Apply	BT-3		4	
7 Describe the symmetrical component of phase 'a" in ters of the current BT-4 8 Describe the equation for sub transient and transient internal voltage BT-3 9 Define doubling effect and DC off-set current BT-1 10 Summarize different between sub transient and transient reactance BT-3 11 Explain the features of zero sequence current? BT-3 12 Discuss the symmetrical components of three phase system BT-5 13 Define negative sequence and zero sequence components BT-1 14 Define short circuit capacity BT-1 15 Discover the symmetrical components Va1, Va2 and Va0 in terms of unbalanced vectors Va, Vb and Vc. BT-6 16 Write down the equation determine symmetrical currents for un balanced current BT-2 18 Demonstrate the zero sequence network diagram of a delta-delta connected transformer. BT-4 19 In which fault, the negative and zero sequence currents are absent? BT-6 20 Develop the connection of sequence networks for line –to-line fault without fault impedance. BT-2 11 Examine the sequence impedance of synchronous machine, BT-5	Understand	BT-2		5	
currentImage: current8Describe the equation for sub transient and transient internal voltageBT-39Define doubling effect and DC off-set currentBT-110Summarize different between sub transient and transient reactanceImage: current11Explain the features of zero sequence current?BT-312Discuss the symmetrical components of three phase systemBT-513Define negative sequence and zero sequence componentsBT-114Define short circuit capacityBT-115Discover the symmetrical components Va1, Va2 and Va0 in terms of unbalanced vectors Va, Vb and Vc.BT-616Write down the equation determine symmetrical currents for un balanced currentBT-218Demonstrate the zero sequence network diagram of a delta-delta connected transformer.BT-620Develop the connection of sequence networks for line -to-line fault without fault impedance.BT-61Examine the sequence impedance of synchronous machine,BT-5	Remember	BT-1	Write boundary conditions for single line to ground faults	6	
9 Define doubling effect and DC off-set current BT-1 10 Summarize different between sub transient and transient reactance BT-1 11 Explain the features of zero sequence current? BT-3 12 Discuss the symmetrical components of three phase system BT-5 13 Define negative sequence and zero sequence components BT-1 14 Define short circuit capacity BT-1 15 Discover the symmetrical components Va1, Va2 and Va0 in terms of unbalanced vectors Va, Vb and Vc. BT-6 16 Write down the equation determine symmetrical currents for un balanced current BT-2 18 Demonstrate the zero sequence network diagram of a delta-delta connected transformer. BT-4 19 In which fault, the negative and zero sequence currents are absent? BT-6 20 Develop the connection of sequence networks for line –to-line fault without fault impedance. BT-6 11 Examine the sequence impedance of synchronous machine, BT-5	Analyze	BT-4		7	
10Summarize different between sub transient and transient reactance11Explain the features of zero sequence current?BT-312Discuss the symmetrical components of three phase systemBT-513Define negative sequence and zero sequence componentsBT-114Define short circuit capacityBT-115Discover the symmetrical components Va1, Va2 and Va0 in terms of unbalanced vectors Va, Vb and Vc.BT-616Write down the equation determine symmetrical currents for un balanced currentBT-217What are symmetrical componentsBT-218Demonstrate the zero sequence network diagram of a delta-delta connected transformer.BT-620Develop the connection of sequence networks for line -to-line fault without fault impedance.BT-61Examine the sequence impedance of synchronous machine,BT-5	Apply	BT-3	Describe the equation for sub transient and transient internal voltage	8	
11Explain the features of zero sequence current?BT-312Discuss the symmetrical components of three phase systemBT-513Define negative sequence and zero sequence componentsBT-114Define short circuit capacityBT-115Discover the symmetrical components Va1, Va2 and Va0 in terms of unbalanced vectors Va, Vb and Vc.BT-416Write down the equation determine symmetrical currents for un balanced currentBT-217What are symmetrical componentsBT-218Demonstrate the zero sequence network diagram of a delta-delta connected transformer.BT-620Develop the connection of sequence networks for line -to-line fault without fault impedance.BT-21Examine the sequence impedance of synchronous machine,BT-5	Remember	BT-1	Define doubling effect and DC off-set current	9	
12Discuss the symmetrical components of three phase systemBT-513Define negative sequence and zero sequence componentsBT-114Define short circuit capacityBT-115Discover the symmetrical components Va1, Va2 and Va0 in terms of unbalanced vectors Va, Vb and Vc.BT-416Write down the equation determine symmetrical currents for un balanced currentBT-617What are symmetrical componentsBT-218Demonstrate the zero sequence network diagram of a delta-delta connected transformer.BT-619In which fault, the negative and zero sequence currents are absent?BT-620Develop the connection of sequence networks for line -to-line fault without faultimpedance.BT-21Examine the sequence impedance of synchronous machine,BT-5			Summarize different between sub transient and transient reactance	10	
13Define negative sequence and zero sequence componentsBT-114Define short circuit capacityBT-114Define short circuit capacityBT-115Discover the symmetrical components Va1, Va2 and Va0 in terms of unbalanced vectors Va, Vb and Vc.BT-416Write down the equation determine symmetrical currents for un balanced currentBT-617What are symmetrical componentsBT-218Demonstrate the zero sequence network diagram of a delta-delta connected transformer.BT-619In which fault, the negative and zero sequence currents are absent?BT-620Develop the connection of sequence networks for line -to-line fault without fault impedance.BT-21Examine the sequence impedance of synchronous machine,BT-5	Apply	BT-3	Explain the features of zero sequence current?	11	
14 Define short circuit capacity BT-1 15 Discover the symmetrical components Va1, Va2 and Va0 in terms of unbalanced vectors Va, Vb and Vc. BT-4 16 Write down the equation determine symmetrical currents for un balanced current BT-6 17 What are symmetrical components BT-2 18 Demonstrate the zero sequence network diagram of a delta-delta connected transformer. BT-6 19 In which fault, the negative and zero sequence currents are absent? BT-6 20 Develop the connection of sequence networks for line -to-line fault without fault impedance. BT-2 1 Examine the sequence impedance of synchronous machine, BT-5	Evaluate	BT-5	Discuss the symmetrical components of three phase system	12	
15Discover the symmetrical components Va1, Va2 and Va0 in terms of unbalanced vectors Va, Vb and Vc.BT-416Write down the equation determine symmetrical currents for un balanced currentBT-617What are symmetrical componentsBT-218Demonstrate the zero sequence network diagram of a delta-delta connected transformer.BT-619In which fault, the negative and zero sequence currents are absent?BT-620Develop the connection of sequence networks for line -to-line fault without fault impedance.BT-21Examine the sequence impedance of synchronous machine,BT-5	Remember	BT-1	Define negative sequence and zero sequence components	13	
terms of unbalanced vectors Va, Vb and Vc.BT-616Write down the equation determine symmetrical currents for un balanced currentBT-617What are symmetrical componentsBT-218Demonstrate the zero sequence network diagram of a delta-delta connected transformer.BT-419In which fault, the negative and zero sequence currents are absent?BT-620Develop the connection of sequence networks for line -to-line fault without fault impedance.BT-21Examine the sequence impedance of synchronous machine,BT-5	Remember	BT-1	Define short circuit capacity	14	
balanced current BT-2 17 What are symmetrical components BT-2 18 Demonstrate the zero sequence network diagram of a delta-delta connected transformer. BT-4 19 In which fault, the negative and zero sequence currents are absent? BT-6 20 Develop the connection of sequence networks for line -to-line fault without fault impedance. BT-2 PART – B 1 Examine the sequence impedance of synchronous machine, BT-5	Analyze	BT-4		15	
18 Demonstrate the zero sequence network diagram of a delta-delta connected transformer. BT-4 19 In which fault, the negative and zero sequence currents are absent? BT-6 20 Develop the connection of sequence networks for line -to-line fault without fault impedance. BT-2 PART – B 1 Examine the sequence impedance of synchronous machine, BT-5	Create	BT-6		16	
delta-delta connected transformer. Image: Connected transformer. 19 In which fault, the negative and zero sequence currents are absent? BT-6 20 Develop the connection of sequence networks for line –to-line fault without fault impedance. BT-2 PART – B 1 Examine the sequence impedance of synchronous machine, BT-5	Understand	BT-2	What are symmetrical components	17	
20 Develop the connection of sequence networks for line -to-line fault without fault impedance. BT-2 PART – B 1 Examine the sequence impedance of synchronous machine, BT-5	Analyze	BT-4	1 0	18	
20 Develop the connection of sequence networks for line –to-line fault without fault impedance. BT-2 PART – B 1 Examine the sequence impedance of synchronous machine, BT-5	Create	BT-6	In which fault, the negative and zero sequence currents are absent?	19	
1 Examine the sequence impedance of synchronous machine, BT-5	Understand	BT-2		20	
			PART – B		
transmission lines and Star connected loads. (13)	Evaluate	BT-5	Examine the sequence impedance of synchronous machine, transmission lines and Star connected loads. (13)	1	
2Label the transformer zero sequence equivalent circuits for the various winding connections and delta connected loadBT-1	Remember	BT-1		2	

3	A 25MVA, 11KV, three phase generator has a sub transient	BT-6	Create
, , , , , , , , , , , , , , , , , , ,	reactance of 20%. The generator supplies two motors over a transmission line with transformers at both ends as shown in one line diagram a of figure. The motors have rated inputs of 15 and 7.5 MVA both 10KV with 25% sub transient reactance. The three phase transformers are rated 30MVA, 10.8/121KV, and connection delta-star with leakage reactance of 10% each. The series reactance of the line is 100 ohms. Label the positive and	B1-0	Create
	negative sequence networks of the system with reactance marked in per unit. (13)		
4	Examine the sequence network for a double line to ground (LLG) fault. (13)	BT-2	Understand
5	A salient pole generator without dampers is rated 20 MVA, 13.6 KV and has direct axis sub – transient reactance of 0.2 per unit. The negative and zero sequence reactance's are, respectively, 0.35 and 0.1 per unit. The neutral of the generator is solidly grounded. With the generator operating unloaded at rated voltage with $E_{an}=1.0 \ \Box 0^{\circ}$ per unit, a single line to ground fault occurs at the machine terminals, which then have per -unit voltage to ground, $Va = 0; V_b = 1.013 \ \Box -102.25^{\circ}; Vc=1.013 \ \Box 102.25^{\circ}$	BT-3	Apply
	Give the sub transient current in the generator and the line to line voltage for sub transient conditions due to the fault. (13)		
6	Discuss the expression for fault current in single line to ground fault on unloaded generator. Draw an equivalent network showing the inter connection of networks to simulate single line to ground fault (13)	BT-1	Remember
7	Show the expression for fault current in double line to ground fault on unloaded generator. Draw an equivalent network showing the inter connection of networks to simulate double line to ground fault (13)	BT-1	Remember
8	Show the expression for fault current in line to line fault on unloaded generator. Draw an equivalent network showing the inter connection of networks to simulate double line to line fault. (13)	BT-2	Understand
9	A 25 MVA,13.2KV alternator with solidly grounded neutral has a sub transient reactance os 0.25.the negative and zero sequence reactance are 0.35 and 0.01 p.u .respectively if a double line to ground fault occuers at the terminals of the alternator. Point out the fault current and line to line voltage at the fault. (13)	BT-3	Apply
10	Point out the expression for fault current for a line to line fault taken place through impedance Z_b in a power system.(13)	BT-2	Understand

11	A Double Line to Ground fault occurs on line b and c at point F in the system of figure . Point out the sub transient current in phase c of the machine 1.assuming pre fault current to be zero. Both machine are rated 1200 KVA,600 V with reactance of X''=X ₂ =10% AND X_0 =5%.each tree phase transformer is rated 1200KVA,600V- delta/300V-star with leakage reactance of 5%.the reactance of the transmission line are X ₁ =X ₂ =20% and X ₀ =40% on the base of 1200 KVA,3300V.the reactance of the neutral of the grounding reactors are 5% on the KVA base of the machines. (13)	BT-3	Apply
12	. Calculate the sub transient current in each phase for a dead short circuit on the one phase to ground at bus 'q' for the system shown in figure below. (13) $ \begin{array}{c} \underline{K} = 1 \angle 0^{*} & & \\ \underbrace{K} = 1 \angle 0^{*} $	BT-4	Analyze
13	. The one-line diagram of a power system is shown below. (16) The one-line diagram of a power system is shown below. (16) The following are the p.u. reactances of different elements on a common base Generator 1: $Xg0 = 0.075$; $X n = 0.075$; $X 1 = X_2 = 0.25$ Generator 2: $Xg0 = 0.15$; $X n = 0.15$; $X 1 = X_2 = 0.2$ Generator 3: $Xg0 = 0.072$; $X_1 = X_2 = 0.15$ Transformer 1: $X_0 = X_1 = X_2 = 0.12$ Transformer 2: $X_0 = X_1 = X_2 = 0.12$ Transformer 3: $X_0 = X_1 = X_2 = 0.12$ Transformer 3: $X_0 = X_1 = X_2 = 0.12$ Transformer 3: $X_0 = 0.05671$; $X_1 = X_2 = 0.18$ Transmission line $2 - 3 X_0 = 0.5671$; $X_1 = X_2 = 0.12$ Prepare the three sequence networks and determine reactances $Z_{bus0}, Z_{bus1}, Z_{bus2}$	BT-4	Analyze

3	Explain the concept of symmetrical component is used short circuit studies in the power system (15)	BT-3	Apply
4	 (i) What are the assumption to made in short circuit studies (7) (ii) Deduce and the draw the sequence network for LLG fault at the terminals of unloaded generator (8) 	BT-6	Create

UNIT V - STABILITY ANALYSIS

Importance of stability analysis in power system planning and operation - classification of power system stability - angle and voltage stability - Single Machine Infinite Bus (SMIB) system: Development of swing equation - equal area criterion - determination of critical clearing angle and time - solution of swing equation by modified Euler method and Runge-Kutta fourth order method.

	PART - A		
Q.No	Questions	BT Level	Competence
1	A four pole,60HZ synchronous generator has a rating of 200MVA,0.8 power factor lagging. the moment of inertia of the rotor is 45100 kg-m ² .formulate M and H	BT-6	Create
2	Define stability	BT-1	Remember
3	Infer the significance of critical clearing time	BT-4	Analyze
4	Discuss transient stability.	BT-2	Understand
5	Summarize assumptions upon transient stability	BT-4	Analyze
6	Define steady state stability limit?	BT-1	Remember
7	Explain transient stability limit?	BT-3	Apply
8	Examine ,How to improve the transient stability limit of power	BT-5	Evaluate
9	Classify steady state stability limit. Define them	BT-2	Understand
10	Discover the machine problems seen in the stability study	BT-3	Apply
11	Give the expression for swing equation. Explain each term along with their units.	BT-1	Remember
12	Order are the assumptions made in solving swing equation?	BT-2	Understand
13	Define swing curve. What is the use of swing curve?	BT-1	Remember
14	pointout the control schemes included in stability control	BT-3	Apply
15	Generalize the systems design strategies aimed at lowering system	BT-4	Analyze
16	Point out equal area criterion	BT-1	Remember
17	Give the expression for critical clearing time	BT-6	Create
18	List the types of disturbances that may occur in a single machine	BT-5	Evaluate
19	Define critical clearing angle.	BT-1	Remember
20	List the assumptions made in multi machine stability studies	BT-2	Understand
	PART - B		
1	Examine swing equation used for stability studies in power system. (13)	BT-1	Remember
2	Describe the equal area criterion for transient stability analysis of a system (13)	BT-4	Analyze
3	Interpret the computation algorithm for obtaining swing curves using modified Euler's method (13)	BT-2	Understand
4	. Examine a short note on i. Factors influencing transient stability (7) ii. Voltage collapse (6)	BT-1	Remember

5	. Given the system of figure below where a three phase fault is applied at a point P as shown.	BT-2	Understand
6	Examine the swing equation of a synchronous machine swinging against an infinite bus. Clearly state the assumption in deducing the swing equation. (13)	BT-6	Create
7	 (i) Derive Expression for critical clearing angle. (6) (ii) A 150 MVA generator – transformer unit having an overall reactance of 0.3 p.u. is delivering 150 MW to infinite bus bar over a double circuit 220 KV line having reactance per phase per circuit of 100 ohms. A 3 - phase fault occurs midway along one of the transmission lines. Give the maximum angle of swing that the generator may achieve before the fault is cleared without loss of stability. 	BT-4 BT-4	Analyze
8	A 50 Hz, 500 MVA, 400 KV generator (with transformer) is connected to a 400 KV infinite bus bar through an interconnector. The generator has H = 2.5 MJ/MVA, Voltage behind transient reactance of 450 KV and is loaded 460 MW. The transfer reactances between generator and bus bar under various conditions are : Prefault 0.5 Pu During Fault 1.0 Pu Post fault 0.75 Pu Calculate the swing curve using intervals of 0.05 sec and assuming that the fault is cleared at 0.15 sec. (13)	BT-5	Evaluate
9	Explain the modified Euler method of analyzing multi machine power system for stability, with neat flow chart. (13)	BT-1	Remember

10	The single line discusses of a sustain is shown in first of the second	DT 2	I In damatan 1
10	The single line diagram of a system is shown in figure.there are four	BT-2	Understand
	identical generators of rating 555 MVA,24 KV,60 HZ supplying		
	power infinite bus bus bar through two transmission circuits. the		
	reactance shown in figure are in p.u. on 2220 MVA,24 KV		
	base(refer to the voltage side of the transformer).resistance are		
	assumed to be negligible. the initial operating conditions, with		
	quantities expressed in p.u on 2220 MVA,24 KV base is as follows:		
	P=0.9,Q=0.436(over exited),Et=1.0<28.34,Eb=0.90081<0. The generator are modeled as a single equivalent generator		
	represented by the classical modal with the following parameter		
	in per unit on 2220 MVA, 24KVbase.		
	X_d '=0.3,H=3.5MWs/MVA, K_D =0. circuit 2 experiences a solid		
	$A_d = 0.5, \Pi = 5.5 \text{ MW s/MVA}, A_D = 0.$ Circuit 2 experiences a solid three phase fault at point f, and the fault is cleared by isolating the		
	fault circuit. Calculate the critical clearing time and critical clearing		
	angle by computing the time response of the rotor angle, using		
	numerical integration. (13)		
	numerical integration. (13)		
	1 17		
	HT		
	LT Trans.		
	(4×555) j0.5		
	MVA Francer 2 bus		
	$\sum E_i j 0.15 \mid \frac{1}{2} j 0.93 \not E_R$		
	P *		
	0 -		
	2		
11	In the power system shown in Fig three phase fault occurs at P	BT-3	Apply
	and the faulty line was opened a little later. Find the power		
	output equations for the pre-fault, during fault and post-fault		
	condition.if delivering 1.0 p.u jest before fault occurs, calculate		
	δεε. (13)		

12	.(i)A 60HZ synchronous generator has a transient reactance of 0.2 p.u and an inertia constant of 5.66MJ/MVA. the generator is connected to an infinite bus through a transformer and a double circuit transmission line, as shown in fiqure.resistsnce are neglected and reactance are expressed on a common MVA base and are marked on the diagram. the generator is delivering a real power of 0.77 p.u to bus bar 1. Voltage magnitude at bus 1 is 1.1 p.u.the infinite bus voltage V=1.06<0 p.u. evaluate the generator excitation voltage and swing equation. (10) $\underbrace{K_{t}=0.158}_{K_{t}} = \underbrace{V=1.020}_{K_{t}'} = \underbrace{V=1.020}_{K_{t}''} = \underbrace{V=1.020}_{K_{t}''} = \underbrace{V=1.020}_{K_{t}''} = \underbrace{V=1.020}_{$	BT-3	Apply
13	. (i) A 2-pole 50 Hz, 11kV turbo alternator has a ratio of 100 MW, power factor 0.85 lagging. The rotor has a moment of inertia of 10,000 kgm ² . Evaluate H and M(4) (ii) A 50 HZ generator is delivering 50% of the power that it is capable of delivering through a transmission line to an infinite bus. A fault occurs that increases the reactance between the generator and the infinite bus to 500% of the value before the fault. When the fault is isolated, the maximum power that can be delivered is 75% of the original maximum value. Evaluate the critical clearing angle for the condition described (9)	BT-3	Apply
14	Develop the Runge-Kutta method of solution of swing equation for multi-machine systems. (13)	BT-1	Remember
	PART - C		
1	 (i) A generator is operating 50Hz, delivers 1.0 p.u power to an infinite through a transmission circuit in which resistance is ignored. A fault taken place reducing a maximum power transferable to 0.5 p.u. Before the fault, this power was 2.0 p.u and after the clearance of the fault it is 1.5p.u. By using equal area criterion ,determine the critical clearing angle (10) (ii) Discuss the method by which transient stability improved (5) 	BT-3	Apply
2	Derive the swing equation and discuss the importance of stability studies in power system planning and operation (15)	BT-4	Analyze
3	Explain the equal area criteria for the following applications (i) Sustained fault (ii) Fault with subsequent clearing (15)	BT-4	Analyze
4	A synchronous motor is receiving 30% of the power that it is capable of receiving from on infinite bus. If the load on the motor is doubled, calculate the maximum value of δ during the swinging of the motor around its new equilibrium position (15)	BT-3	Apply