DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING III Year ECE / V Semester EC 6502 – PRINCIPLES OF DIGITAL SIGNAL PROCESSING QUESTION BANK

UNIT I – DISCRETE FOURIER TRANSFORM

PART A

DFT AND ITS PROPERTIES

1.	Define – Discrete Fourier Transformation (DFT) of a sequence $x(n)$	
2.	Write the formula for N-point IDFT of a sequence X(k).	
3.	What is twiddle factor?	[N/D – 12 R08]
4.	Calculate the 4-point DFT of the sequence .	[M/J - 13 R08]
5.	Compute the DFT of a sequence $(-1)^n$ for N = 4.	[N/D - 12 R04]
6.	Compute the N-point DFT of the signal	[N/D - 10 R04]
7.	Determine the DFT of the sequence	[N/D - 06 R04]
8.	Calculate the DFT of the sequence $x(n) = \{1, 1, 0, 0\}$.	
9.	What is zero padding? What are its uses? $[N/D - 13]$	8 R08] [N/D – 11 R08]
10.	List out any four properties of DFT.	
11.	State the time shifting property of DFT.	
12.	State the circular frequency shifting property of DFT.	
13.	Prove that $H(k)$ and $H(N - k)$ are complex conjugates, If $H(k)$ is the N-po	int DFT of a sequence
	h(n).	[N/D - 08 R04]
14.	State and prove Parseval's relation for DFT.	[N/D – 07 R04]
15.	State the convolution property of DFT.	[A/M - 08 R04]
16.	Distinguish between linear and circular convolution of two sequences.	
17.	Obtain the circular convolution of the following sequences	S
	and	[N/D - 10 R08]
18.	The first five DFT coefficients of a sequence are X	
	Determine the remaining DFT coefficients	[M/J - 07 R04]
19.	Distinguish between Discrete Time Fourier Transform (DTFT) and Discrete	ete Fourier Transform
•	(DFT). $[M/J - 12 \text{ R08}] [N/D - J]$	[1 R08] [A/M – 11 R04]
20.	Write the relationship between DTFT and DFT.	[N/D - 10 R04]
21.	Distinguish between DFT and DTFT.	[M/J - 14 R04]
22.	What is the relationship between Z-transform and DFT?	[N/D - 09 K04]
23.	How many multiplications and additions are required to compute N-point	DFT using direct
	method?	
FF]	<u>COMPUTATIONS USING DECIMATION IN TIME AND DECIMA</u>	ATION IN
FR	EQUENCY ALGORITHMS	
24.	What is FFT?	[N/D - 06 R04]
25.	What is meant by radix-2 FFT?	[N/D - 09 R04]
26.	What are the applications of FFT algorithm?	
27.	What is in-place computation? [N/D –	14 R08][M/J – 13 R08]
28.	What is meant by bit reversal? $[M/J - 14 \text{ R08}][A/M - 1]$	1 R08] [N/D – 07 R04]
29.	Draw the basic Butterfly diagram of radix-2 FFT.	[A/M – 08 R04]
30.	Draw the basic Butterfly structure for radix-2 Decimation In Time algorith	hm. $[N/D - 12 R04]$
31.	What is Decimation In Time (DIT) algorithm?	
32.	What is Decimation In Frequency (DIF) algorithm?	
33.	Compare DIT algorithm with DIF algorithm.	
34.	How many stages of decimation are required in the case of a 64-pc	pint radix-2
	DIT-FFT algorithm?	[N/D - 12 R08]

Department of Electronics and Communication Engineering

35.	Determine the number of multiplications required in the compu	tation of 8-point DFT using FFT.
		[M/J - 12 R08]
36.	How many multiplications and additions are required to compute	e N-Point DFT using radix-2
	FFT?	[N/D - 13 R08] [N/D - 10 R08]
37.	Write the advantages of FFT over DFT.	[A/M – 11 R08] [M/J – 07 R04]
38.	Compare the number of multiplications required to compute the	DFT of a 64-point sequence
	using direct computation and that using FFT.	[N/D-14 R08]
39.	Distinguish between decimation in time and decimation in frequ	ency FFT algorithms.
		[N/D - 08 R04]

OVERLAP-ADD AND SAVE METHODS

40. Differentiate overlap-add method from overlap-save method.

PART B

DFT AND ITS PROPERTIES

1.	a) Differentiate DFT from DTFT.	(4)
	b) Compute an 8 point DFT of the sequence	
		(12)[N/D – 12 R08]
2.	Compute the DFT of .	(6) [M/J - 12 R08]
3.	Determine the N-point DFT for the following sequences	
	a) $x(n) = \delta(n)$	
	b) $\mathbf{x}(\mathbf{n}) = \delta(\mathbf{n} - \mathbf{n}_0)$	(6) $[N/D - 12R08]$
4.	Determine the Discrete Fourier Transform of an aperiodic sequence,	(0) [1 #2 12100]
	Sketch the spectrum.	(10) [N/D - 10 R04]
5.	Determine the 4-point DFT of	(8) [N/D - 09 R04]
6.	List out the properties of DFT.	(6) $[N/D - 10R08]$
7.	Explain the following properties of DFT:	(16) [M/J - 12 R08]
	a) Linearity	
	b) Complex conjugate property	
	c) Circular Convolution	
	d) Time Reversal	
8.	State and prove any four properties of DFT.	(16) [N/D – 12 R04]
9.	State and prove the following properties of DFT:	
	a) Convolution	
	b) Time Reversal	
	c) Time Shift	
	d) Periodicity	(12) [N/D – 09 R04]
10.	a) Explain the following properties of DFT:	
	i) Time reversal	
	ii) Parsvel's theorem	(8) [M/J – 13 R08]
	b) Compute linear convolution of the sequences	,
	using DFT method.	(8) [M/J – 13 R08]
11.	a) Explain in detail, the important properties of the Discrete Fourier Transfe	orm. (8)

	b) Compute the 4-point DFT of the sequence — .	(8) [A/M – 08 R04]
12.	Calculate the output response of the given input sequence using DFT and IDFT method.	and (8) [N/D – 12 R04]
13.	Two finite duration sequences are:	
	—	
14.	 a) Calculate the 4-point DFT X(k) b) Calculate the 4-point DFT H(k) c) If Y(k) = X(k) H(k), determine y(n), the inverse DFT of Y(k) Two finite duration sequences are: 	(5) (5) (6) [N/D – 08 R04]
	a) Calculate the 4-point DFT $X(k)$	(5)
	b) Calculate the 4-point DFT H(k)	(5)
	c) If $Y(k) = X(k) \hat{H}(k)$, determine the inverse DFT $y(n)$ of $Y(k)$	and sketch it.
		(6) [N/D – 07 R04]
15.	Compute the DFT of the sequence whose values for one period is given	by
		(8) [N/D – 13 R08]
16.	Evaluate the 8-point DFT for the following sequence using DIT-FFT alg	orithm
		(8) [N/D – 13 R08]

FFT COMPUTATIONS USING DECIMATION IN TIME AND DECIMATION IN FREQUENCY ALGORITHMS

17.	Derive the necessary equations to draw the butterfly	diagram of an 8-point radix-2
	DIF-FFT algorithm and label it.	(16) [M/J – 13 R08]
18.	a) Prove that FFT algorithms helps in reducing the numb	per of computations involved in DFT
	computation.	(6)
	b) Compute 8-point DFT of the sequence	using DIT-FFT algorithm.
		(10) [N/D – 12 R08]
19.	Explain Decimation In Time-FFT (DIT-FFT) algorithm	for the 8-point DFT computation.
		(10) [M/J – 12 R08]
20.	Compute the 8-point DFT of the sequence	ce using
	radix-2 DIF algorithm.	(10) [N/D – 11 R08]
21.	Explain radix-2 DIF-FFT algorithm. Compare it with DI	T-FFT algorithm. $(16) [A/M - 11 R08]$
22.	Compute by using Decimation In Tin	me – FFT for the sequences
	, y	, If .
		(16) [A/M – 11 R04]
23.	Compute the 8-point DFT of the sequence	using radix-2
	DIT algorithm.	(10) [N/D – 10 R08]

Department of Electronics and Communication Engineering

24. Compute the 8-point DFT of the sequence by using the Decimation	on In
Frequency-FFT algorithm. $(10) [N/D - 10]$	R08]
25. Determine the 4-point IDFT for the DFT coefficients by	using
the radix-2 DIT-FFT algorithm. (6) $[N/D - 10]$	R04]
26. Compute the DFT of the sequence using DIF-FFT algorithm.	-
(8) [N/D – 12	R04]
27. Compare the computational complexity of direct DFT computation with FFT computation of	a
sequence, with $N = 64$. (4) $[N/D - 09]$	R04]
28. Explain Decimation In Time-FFT algorithm for $N = 8$. (8) $[N/D - 09]$	R04]
29. a) Explain the computation of 8-point DFT using Decimation In Time-FFT algorithm and dra	iW
the signal flow graph.	(8)
b) Using the above signal flow graph, compute DFT of —	
(8) [N/D – 07 R04] [N/D – 08	R04]
30. a) Explain the computation of 8-point DFT using Decimation In Frequency-FFT algorithm and	nd
draw the signal flow graph.	(8)
b) Using the above signal flow graph, compute DFT of	
(8) [M/J – 07	R04]
31. a) Explain Decimation In Time algorithm and draw the butterfly line diagram for 8-point FF	Г.
	(8)
b) Compute the 8-point DFT of the sequence using DIF-FFT r	adix-
2 algorithm. (8) $[A/M - 08]$	R04]
32. a) Develop a 8 point DIT FFT algorithm. Draw the signal flow graph. Determine the DFT of	the
following sequence using the signal flow graph. Show al	1 the
intermediate results on the signal flow graph. $(8)[M/J - 14]$	R08]
33. Evaluate the 8-point DFT for the following sequence using DIT-FFT algorithm	
(8) [N/D 13	R08]
34. Compute the 8-point DFT of the sequence using DIT-FFT ra	dix-2
algorithm. $(10) [A/M - 14]$	R08]
35.	ŗ
OVERLAP-ADD AND SAVE METHODS	

36.	Explain with appropriate diagrams, overlap-save method and overlap-add method for filtering of									
	long data se	equer	nces usi	ng DFT.			(16)[M/J – 14	4 R08][A/M -	11 R08]
37.	Explain over	erlap	-add me	thod for linea	r FIR fil	tering o	f a long se	equence.	(6) [N/D –	10 R08]
38.	Compute	the	linear	convolution	of	finite	duration	sequences		and
						by or	ver-lap ad	d method.	(16) [N/D –	11 R08]
39.	Summarize	the d	ifferenc	e between ove	rlap-save	e method	and over	lap-add meth	od.	
									(8)[N/D	13 R08]

UNIT II – INFINITE IMPULSE RESPONSE FILTERS PART A

<u>REVIEW OF DESIGN OF ANALOGUE BUTTERWORTH AND CHEBYSHEV FILTERS,</u> <u>FREQUENCY TRANSFORMATION IN ANALOGUE DOMAIN</u>

1.	Why is Butterworth response called a maximally flat response?	[N/D – 12 R08]
2.	Compare Butterworth filter with Chebyshev filter.	[N/D - 14 R08] [M/J - 12R08]
3.	List out the properties of Chebyshev filter.	[A/M – 11 R08][N/D – 11R08]
4.	What is the importance of analog approximation in the design of	a digital filter? [A/M - 11 R08]
5.	List out the properties of Butterworth filter.	[N/D – 10 R04]
6.	Write any two properties of Butterworth and Chebyshev filters.	[N/D - 06 R04]
7.	What are the differences between IIR filter and FIR filter?	[N/D - 12 R04]
8.	What are the properties of IIR filter?	[N/D – 11 R08]
9.	What is Butterworth approximation?	
10.	How are the poles of Butterworth transfer function located in s- p	plane?
11.	What is meant by Chebyshev approximation?	
12.	What is Type –1 Chebyshev approximation?	
13.	What is Type –2 Chebyshev approximation?	
14.	How is a digital filter designed from an analog filter? (or) Write t	the steps in design of digital
	filter from analog filter.	[N/D - 13 R08]
15.	What are the advantages and disadvantages of a digital filter?	
16.	Sketch the frequency response of an odd and even order Chebysh	nev low pass filers.
		[M/J – 14 R08]
DE		
DE	SIGN OF HR DIGITAL FILTERS USING IMPULSE INVAR	AANCE IECHNIQUE
17.	Convert the given analog transfer function — into dig	gital transfer function by impulse
	invariant method.	[M/J – 13 R08]
18.	Compute the digital transfer function $H(z)$ by using impulse	invariant method for analog
	transfer function $H(s) = 1 / (s+2)$. Assume $T = 0.1$ sec.	[N/D - 07 R04]
19.	What is the relationship between analog and digital frequence	cy in impulse invariant
	transformation?	[A/M – 08 R04]
20.	What are the limitations of impulse invariance mapping techniqu	e? $[N/D - 09 R04]$
21.	Compute the digital transfer function $H(z)$ by using impulse	invariant method for analog
	transfer function $H(s) = 1 / (s+2)$. Assume $T = 0.5$ sec.	[M/J - 07 R04]
22.	What is impulse invariant transformation?	
DE		
DE	SIGN OF DIGITAL FILTERS USING BILINEAR TRANSFO	<u>RM</u>
23.	What is meant by frequency warping?	[N/D - 12 R08]
24.	What is prewarping in digital filters?	
	[N/D – 10 R08][N/D – 08 R04	[M/J – 12 R08] [N/D – 14 R08]
25.	What is Bilinear transformation?	
26.	What is Bilinear transformation? What are the main advantage	ges and disadvantages of this
	technique?	[M/J - 14 R08]
27.	What is the relation between digital frequency and analog frequency	ncy in Bilinear transformation?
28.	Compare the impulse invariant transformation with bilinear trans	formation.

REALIZATION USING DIRECT, CASCADE AND PARALLEL FORMS

29.	What are the advantages of cascade realization?	[M/J - 13 R08]
30.	Draw the direct form structure of IIR filter.	[N/D - 11 R08]
31.	What is the advantage of direct form II realization over direct form I realization?	
		[N/D - 10 R08]
3	32. List out the different realization methods used for realizing recursive and non-	recursive filters. [N/D – 10 R04]
33.	 How many number of additions, multiplications and memory locations are require system H(z) having M zeros and N poles in a) Direct form – I realization b) Direct form – II realization 	ed to realize a
34.	What are the disadvantages of direct form realization?	[N/D - 13 R08]

PART B

<u>REVIEW OF DESIGN OF ANALOGUE BUTTERWORTH AND CHEBYSHEV FILTERS,</u> <u>FREQUENCY TRANSFORMATION IN ANALOGUE DOMAIN</u>

1.	Explain the Butterworth filter approximation.	(16) [M/J – 11 R08]
2.	Design an analog Butterworth filter that has $\alpha_p = 0.5 \text{ dB}$,	α_s = 0.8 dB, f_p = 10 kHz and
	$f_s = 25 \text{ kHz}.$	(16) [N/D – 12 R04]
3.	Explain the procedure for designing analog filters using the Ch	ebyshev approximation.
		(6) $[N/D - 12 R08]$

DESIGN OF IIR DIGITAL FILTERS USING IMPULSE INVARIANCE TECHNIQUE

4. Design a Butterworth filter using the impulse invariant technique for the specification

(16)[M/J - 13 R08]

- 5. Compute h(n) using impulse invariant method for the transfer function _____. Assume T=1 sec. (8) [M/J - 12 R08]
- 6. Design a digital Butterworth filter using impulse invariant method (Assume T=1 sec) satisfying the following constraints:

(16) [N/D - 11 R08]

7. Design a digital Butterworth filter satisfying the following specifications:

	Apply impulse invariant transformation ($T = 1$ sec).	(16) [N/D – 07 R04]
8.	Determine H(z) using impulse invariant technique for	the analog transfer function
		(6) [A/M – 08 R04]
9.	Convert the analog transfer function into digital transfer f	function (Assume $T = 0.1$ sec).
	———— using impulse invariant mapping.	(8) [N/D – 09 R04]

10. Convert the following analog transfer function into digital using impulse invariant mapping with T = 1 sec.

(10) [N/D - 12 R08]

DESIGN OF DIGITAL FILTERS USING BILINEAR TRANSFORM

11. Design a Butterworth filter using the bilinear transformation for the specification:

(16) [M/J - 12 R08]
12. Convert the analog filter with a transfer function _______ into a digital IIR filter using the Bilinear transformation. Assume T=1 sec. (8) [M/J - 13 R08]
13. Explain the Bilinear transformation of IIR filter design. What is warping effect? Explain the poles and zeros mapping procedure. (16) [M/J - 11 R08]
14. Determine the system function H(z) of the Chebyshev low pass digital filter using bilinear transformation (assume T=1 sec) with the specifications: ripple in the pass band ripple in the stop band . (16) [N/D - 10 R08]
15. Design a digital Butterworth filter that satisfies the following constraint using Bilinear transformation (assume T = 1 sec)

(10) [A/M - 08 R04]

- 16. Design a digital Butterworth filter using T = 1 sec, satisfying the following constraints:
 - a) Bilinear Transformation method
- b) Impulse Invariant method. (16) [N/D 10 R04]
 17. Explain the concept of Bilinear transformation mapping technique with necessary expressions and sketches. Compare the advantages and disadvantages of this method with that of impulse invariant method. (8) [A/M 11 R04]
- 18. Design a first order Butterworth LPF with 3dB cutoff frequency of 0.2π using Bilinear transformation.
 (8) [A/M 11 R04]
- 19. Design a digital Butterworth filter using Bilinear transformation (assume T = 1 sec), satisfying the constraints:

Realize the filter in most convenient form. (16) [N/D - 06 R04]

20. Design a digital Butterworth filter using bilinear transformation (with T = 0.1 sec), satisfying the constraints:

(16) [M/J – 07 R04]

21. Discuss the steps in the design of IIR filter using Bilinear transformation for any one type of (8) [N/D - 13 R08]filter. 22. Design a low pass Butterworth digital filter with the following specifications: $W_S = 4000$, $W_P = 3000$, $A_P = 3dB$, $A_S = 20dB$, T = 0.0001 sec. (16) [M/J - 14 R08]23. Design a digital second order low – pass Butterworth filter with cut-off frequency 2200 Hz using Bilinear transformation. Sampling rate is 8000 Hz. (8) [N/D - 12 R08]**REALIZATION USING DIRECT, CASCADE AND PARALLEL FORMS** 24. Realize the digital system in cascade form (8) [M/J - 13 R08]25. Derive and draw the direct form-I and direct form-II realization for H(z) = -(8) [M/J - 12 R08]26. Derive and draw the direct form-I, direct form-II and cascade form realization of the system function (16) [N/D – 11 R08] 27. Derive and draw the direct form-I, direct form-II, cascade and parallel form realization for the system (16) [N/D - 10 R08]28. Convert the following pole-zero IIR filter into a lattice ladder structure. (16)[N/D - 13 R08]29. A system is represented by a transfer function H(z) is given by (i) Does this represent a FIR or IIR filter? Why? (4) (ii) Give a difference equation realization of this system using direct form I. (6)(iii) Draw the block diagram for the direct form II canonic realization and give the governing equations for implementation. (6) [M/J - 14 R08]30. Determine the cascade form and parallel form implementation of the system governed by the transfer function

(8) [N/D - 12 R08]

UNIT III – FINITE IMPULSE RESPONSE FILTERS PART A

SYMMETRIC AND ANTISYMMETRIC FIR FILTERS – LINEAR PHASE FIR FILTERS

 What are symmetric and and symmetric PIK filters? [N/D - 13 R08] [N/D - 11 R08] [A/M - 11 R08] What is the necessary and sufficient condition for linear phase characteristics in FIR filter?	1.	List out the advantages and disadvantages of FIR filters. $[M/J - What are symmetric and anti symmetric EIP filters?$	13 R08] [A/M – 08 R04]
 State the properties of FIR filter. [N/D - 15 R05] [N/D - 11 R05] [A/M - 11 R05] What is the necessary and sufficient condition for linear phase characteristics in FIR filter? [A/M - 11 R04] Draw the block diagram representation of FIR system. [N/D - 06 R04] Show that the filter with is a linear phase filter. [M/J - 07 R04] What are the steps involved in the FIR filter design? What is meant by optimum equiripple design criterion? Why is it followed? State the effect of having abrupt discontinuity in frequency response of FIR filters. [M/J - 14 R08] DESIGN USING HAMMING, HANNING AND BLACKMANN WINDOWS Write the equations for Hamming window and Blackman window. [M/J - 13 R08] [N/D - 10 R08] What are the features of FIR filter design using the Kaiser's approach? [N/D - 12 R08] Define - Gibbs Phenomenon[A/M - 11 R08][M/J - 14 R08] [M/J - 12 R08] [N/D - 10 R08] What are the desirable characteristics of windows? [N/D - 13 R08] [N/D - 11 R08] What is window different from other windows? [N/D - 13 R08] [N/D - 11 R08] How is Kaiser window different from other windows? [N/D - 07 R04] Write the equation for Hanning window function. Write the equation for Bartlett window function. Write the equation for FIR filter design by frequency sampling method. REALIZATION OF FIR FILTERS – TRANSVERSAL, LINEAR PHASE AND POLYPHASE STRUCTURES Draw the direct form implementation of FIR system having difference equation . [N/D - 12 R08] Draw the direct form implementation of FIR system having difference equation . [N/D - 12 R08] Determine the transversal structure of the system function 	2. 2	State the group article of EID filter	[IVI/J - I2 KU0]
 4. What is the necessary and sufficient condition for linear phase characteristics in FIK filter? [A/M – 11 R04] 5. Draw the block diagram representation of FIR system. [N/D – 06 R04] 6. Show that the filter with is a linear phase filter. [M/J – 07 R04] 7. What are the steps involved in the FIR filter design? 8. What is meant by optimum equiripple design criterion? Why is it followed? 9. State the effect of having abrupt discontinuity in frequency response of FIR filters. [M/J – 14 R08] DESIGN USING HAMMING, HANNING AND BLACKMANN WINDOWS 10. Write the equations for Hamming window and Blackman window. [M/J – 13 R08] [N/D – 10 R08] 11. What are the features of FIR filter design using the Kaiser's approach? [N/D – 12 R08] 12. Define – Gibbs Phenomenon[A/M – 11 R08][M/J – 14 R08] [M/J – 12 R08] [A/M – 10 R08] 13. What are the desirable characteristics of windows? [N/D – 13 R08] [N/D – 11 R08] 14. How is Kaiser window different from other windows? [N/D – 07 R04] 15. What is window function? Why is it necessary? 16. Write the equation for Bartlett window function. 17. Write the equation for Bartlett window function. FREQUENCY SAMPLING METHOD 18. Write the procedure for FIR filter design by frequency sampling method. REALIZATION OF FIR FILTERS – TRANSVERSAL, LINEAR PHASE AND POLYPHASE STRUCTURES 19. Draw the direct form implementation of FIR system having difference equation . [N/D – 12 R08] 20. Determine the transversal structure of the system function	3. 1	State the properties of FIR inter. $[N/D - 15 \text{ K08}][N/D - 15 \text{ K08}]$	-11 K08 [A/M - 11 K08]
 [A/M - 11 R04] 5. Draw the block diagram representation of FIR system. [N/D - 06 R04] 6. Show that the filter with is a linear phase filter. [M/J - 07 R04] 7. What are the steps involved in the FIR filter design? 8. What is meant by optimum equiripple design criterion? Why is it followed? 9. State the effect of having abrupt discontinuity in frequency response of FIR filters. [M/J - 14 R08] DESIGN USING HAMMING, HANNING AND BLACKMANN WINDOWS 10. Write the equations for Hamming window and Blackman window. [M/J - 13 R08] [N/D - 10 R08] 11. What are the features of FIR filter design using the Kaiser's approach? [N/D - 12 R08] 12. Define - Gibbs Phenomenon[A/M - 11 R08][M/J - 14 R08] [M/J - 13 R08] [N/D - 10 R08] 13. What are the desirable characteristics of windows? [N/D - 13 R08] [N/D - 11 R08] 14. How is Kaiser window different from other windows? [N/D - 13 R08] [N/D - 11 R08] 15. What is window function? Why is it necessary? 16. Write the equation for Hanning window function. FREQUENCY SAMPLING METHOD 18. Write the procedure for FIR filter design by frequency sampling method. REALIZATION OF FIR FILTERS – TRANSVERSAL, LINEAR PHASE AND POLYPHASE STRUCTURES 19. Draw the direct form implementation of FIR system having difference equation . [N/D - 12 R08] 20. Determine the transversal structure of the system function 	4.	What is the necessary and sufficient condition for linear phase character	istics in FIR filter?
 5. Draw the block diagram representation of FIR system. [N/D – 06 R04] 6. Show that the filter with is a linear phase filter. [M/J – 07 R04] 7. What are the steps involved in the FIR filter design? 8. What is meant by optimum equiripple design criterion? Why is it followed? 9. State the effect of having abrupt discontinuity in frequency response of FIR filters. [M/J – 14 R08] DESIGN USING HAMMING, HANNING AND BLACKMANN WINDOWS 10. Write the equations for Hamming window and Blackman window. [M/J – 13 R08] [N/D – 10 R08] 11. What are the features of FIR filter design using the Kaiser's approach? [N/D – 12 R08] 12. Define – Gibbs Phenomenon[A/M – 11 R08][M/J – 14 R08] [M/J – 12 R08] [A/M – 10 R08] 13. What are the desirable characteristics of windows? [N/D – 13 R08] [N/D – 11 R08] 14. How is Kaiser window different from other windows? [N/D – 07 R04] 15. What is window function? Why is it necessary? 16. Write the equation for Bartlett window function. 17. Write the procedure for FIR filter design by frequency sampling method. EEALIZATION OF FIR FILTERS – TRANSVERSAL, LINEAR PHASE AND POLYPHASE STRUCTURES 19. Draw the direct form implementation of FIR system having difference equation [N/D – 12 R08] 20. Determine the transversal structure of the system function 	_		[A/M - 11 R04]
 6. Show that the filter with is a linear phase filter. [M/J – 07 R04] 7. What are the steps involved in the FIR filter design? 8. What is meant by optimum equiripple design criterion? Why is it followed? 9. State the effect of having abrupt discontinuity in frequency response of FIR filters. [M/J – 14 R08] DESIGN USING HAMMING, HANNING AND BLACKMANN WINDOWS 10. Write the equations for Hamming window and Blackman window. [M/J – 13 R08] [N/D – 10 R08] 11. What are the features of FIR filter design using the Kaiser's approach? [N/D – 12 R08] 12. Define – Gibbs Phenomenon[A/M – 11 R08][M/J – 14 R08] [M/J – 12 R08] [A/M – 10 R08] 13. What are the desirable characteristics of windows? [N/D – 13 R08] [N/D – 11 R08] 14. How is Kaiser window different from other windows? [N/D – 13 R08] [N/D – 11 R08] 15. What is window function? Why is it necessary? 16. Write the equation for Hanning window function. 17. Write the equation for Bartlett window function. 18. Write the procedure for FIR filter design by frequency sampling method. REALIZATION OF FIR FILTERS – TRANSVERSAL, LINEAR PHASE AND POLYPHASE STRUCTURES 19. Draw the direct form implementation of FIR system having difference equation 20. Determine the transversal structure of the system function 	5.	Draw the block diagram representation of FIR system.	[N/D - 06 R04]
 What are the steps involved in the FIR filter design? What is meant by optimum equiripple design criterion? Why is it followed? State the effect of having abrupt discontinuity in frequency response of FIR filters. [M/J – 14 R08] DESIGN USING HAMMING, HANNING AND BLACKMANN WINDOWS Write the equations for Hamming window and Blackman window. [M/J – 13 R08] [N/D – 10 R08] What are the features of FIR filter design using the Kaiser's approach? [N/D – 12 R08] Define – Gibbs Phenomenon[A/M – 11 R08][M/J – 14 R08] [M/J – 12 R08] [A/M – 10 R08] What are the desirable characteristics of windows? [N/D – 13 R08] [N/D – 11 R08] How is Kaiser window different from other windows? [N/D – 13 R08] [N/D – 11 R08] How is Kaiser window different from other windows? [N/D – 13 R08] [N/D – 11 R08] How is kaiser window different from other windows? [N/D – 07 R04] Write the equation for Hanning window function. Write the equation for Bartlett window function. Write the equation for FIR filter design by frequency sampling method. REALIZATION OF FIR FILTERS – TRANSVERSAL, LINEAR PHASE AND POLYPHASE STRUCTURES Draw the direct form implementation of FIR system having difference equation [N/D – 12 R08] Determine the transversal structure of the system function 	6.	Show that the filter with is a linear phase filter.	[M/J – 07 R04]
 8. What is meant by optimum equiripple design criterion? Why is it followed? 9. State the effect of having abrupt discontinuity in frequency response of FIR filters. [M/J – 14 R08] DESIGN USING HAMMING, HANNING AND BLACKMANN WINDOWS 10. Write the equations for Hamming window and Blackman window. [M/J – 13 R08] [N/D – 10 R08] 11. What are the features of FIR filter design using the Kaiser's approach? [N/D – 12 R08] 12. Define – Gibbs Phenomenon[A/M – 11 R08][M/J – 14 R08] [M/J – 12 R08] [A/M – 10 R08] 13. What are the desirable characteristics of windows? [N/D – 13 R08] [N/D – 11 R08] 14. How is Kaiser window different from other windows? [N/D – 13 R08] [N/D – 07 R04] 15. What is window function? Why is it necessary? 16. Write the equation for Hamning window function. 17. Write the equation for Bartlett window function. 18. Write the procedure for FIR filter design by frequency sampling method. REALIZATION OF FIR FILTERS – TRANSVERSAL, LINEAR PHASE AND POLYPHASE STRUCTURES 19. Draw the direct form implementation of FIR system having difference equation 20. Determine the transversal structure of the system function 	7.	What are the steps involved in the FIR filter design?	
 9. State the effect of having abrupt discontinuity in frequency response of FIR filters. [M/J – 14 R08] DESIGN USING HAMMING, HANNING AND BLACKMANN WINDOWS 10. Write the equations for Hamming window and Blackman window. [M/J – 13 R08] [N/D – 10 R08] 11. What are the features of FIR filter design using the Kaiser's approach? [N/D – 12 R08] 12. Define – Gibbs Phenomenon[A/M – 11 R08][M/J – 14 R08] [M/J – 12 R08] [A/M – 10 R08] 13. What are the desirable characteristics of windows? [N/D – 13 R08] [N/D – 11 R08] 14. How is Kaiser window different from other windows? [N/D – 13 R08] [N/D – 07 R04] 15. What is window function? Why is it necessary? 16. Write the equation for Hanning window function. 17. Write the equation for Bartlett window function. FREOUENCY SAMPLING METHOD 18. Write the procedure for FIR filter design by frequency sampling method. REALIZATION OF FIR FILTERS – TRANSVERSAL, LINEAR PHASE AND POLYPHASE STRUCTURES 19. Draw the direct form implementation of FIR system having difference equation . [N/D – 12 R08] 20. Determine the transversal structure of the system function 	8.	What is meant by optimum equiripple design criterion? Why is it follow	ed?
Image: Participan Decision of Parameters Image: Parameter	9.	State the effect of having abrupt discontinuity in frequency response of I	FIR filters.
DESIGN USING HAMMING, HANNING AND BLACKMANN WINDOWS 10. Write the equations for Hamming window and Blackman window. [M/J – 13 R08] [N/D – 10 R08] 11. What are the features of FIR filter design using the Kaiser's approach? [N/D – 12 R08] [N/D – 12 R08] [N/D – 12 R08] [N/D – 12 R08] [N/D – 13 R08] [N/D – 11 R08] [N/D – 07 R04] 15. What is window function? Why is it necessary? 16. Write the equation for Hanning window function. FREQUENCY SAMPLING METHOD 18. Write the procedure for FIR filter design by frequency sampling method. REALIZATION OF FIR FILTERS – TRANSVERSAL, LINEAR PHASE AND POLYPHASE STRUCTURES 19. Draw the direct form implementation of FIR system having difference equation . [N/D – 12 R08] 20. Determine the transversal structure of the system function			[M/J - 14 R08]
 10. Write the equations for Hamming window and Blackman window. [M/J – 13 R08] [N/D – 10 R08] 11. What are the features of FIR filter design using the Kaiser's approach? [N/D – 12 R08] 12. Define – Gibbs Phenomenon[A/M – 11 R08][M/J – 14 R08] [M/J – 12 R08] [A/M – 10 R08] 13. What are the desirable characteristics of windows? [N/D – 13 R08] [N/D – 11 R08] 14. How is Kaiser window different from other windows? [N/D – 13 R08] [N/D – 11 R08] 15. What is window function? Why is it necessary? 16. Write the equation for Hanning window function. 17. Write the equation for Bartlett window function. 18. Write the procedure for FIR filter design by frequency sampling method. REALIZATION OF FIR FILTERS – TRANSVERSAL, LINEAR PHASE AND POLYPHASE STRUCTURES 19. Draw the direct form implementation of FIR system having difference equation . [N/D – 12 R08] 20. Determine the transversal structure of the system function 	DE	SIGN USING HAMMING, HANNING AND BLACKMANN WINDO	WS
[MJ - 13 R08] [N/D - 10 R08] 11. What are the features of FIR filter design using the Kaiser's approach? [N/D - 12 R08] 12. Define – Gibbs Phenomenon[A/M – 11 R08][M/J – 14 R08] [M/J – 12 R08] [A/M – 10 R08] 13. What are the desirable characteristics of windows? [N/D – 13 R08] [N/D – 11 R08] 14. How is Kaiser window different from other windows? [N/D – 13 R08] [N/D – 11 R08] 15. What is window function? Why is it necessary? 16. Write the equation for Hanning window function. 17. Write the equation for Bartlett window function. 18. Write the procedure for FIR filter design by frequency sampling method. REALIZATION OF FIR FILTERS – TRANSVERSAL, LINEAR PHASE AND POLYPHASE STRUCTURES 19. Draw the direct form implementation of FIR system having difference equation 20. Determine the transversal structure of the system function	10.	Write the equations for Hamming window and Blackman window.	
 What are the features of FIR filter design using the Kaiser's approach? [N/D – 12 R08] Define – Gibbs Phenomenon[A/M – 11 R08][M/J – 14 R08] [M/J – 12 R08] [A/M – 10 R08] What are the desirable characteristics of windows? [N/D – 13 R08] [N/D – 11 R08] How is Kaiser window different from other windows? [N/D – 07 R04] What is window function? Why is it necessary? Write the equation for Hanning window function. Write the equation for Bartlett window function. Write the procedure for FIR filter design by frequency sampling method. REALIZATION OF FIR FILTERS – TRANSVERSAL, LINEAR PHASE AND POLYPHASE STRUCTURES Draw the direct form implementation of FIR system having difference equation N/D – 12 R08] Determine the transversal structure of the system function 		[M/J –	13 R08] [N/D – 10 R08]
 12. Define – Gibbs Phenomenon[A/M – 11 R08][M/J – 14 R08] [M/J – 12 R08] [A/M – 10 R08] 13. What are the desirable characteristics of windows? [N/D – 13 R08] [N/D – 11 R08] 14. How is Kaiser window different from other windows? [N/D – 07 R04] 15. What is window function? Why is it necessary? 16. Write the equation for Hanning window function. 17. Write the equation for Bartlett window function. 18. Write the procedure for FIR filter design by frequency sampling method. REALIZATION OF FIR FILTERS – TRANSVERSAL, LINEAR PHASE AND POLYPHASE STRUCTURES 19. Draw the direct form implementation of FIR system having difference equation 20. Determine the transversal structure of the system function 	11.	What are the features of FIR filter design using the Kaiser's approach?	[N/D - 12 R08]
 13. What are the desirable characteristics of windows? [N/D – 13 R08] [N/D – 11 R08] 14. How is Kaiser window different from other windows? [N/D – 07 R04] 15. What is window function? Why is it necessary? 16. Write the equation for Hanning window function. 17. Write the equation for Bartlett window function. 18. Write the procedure for FIR filter design by frequency sampling method. REALIZATION OF FIR FILTERS – TRANSVERSAL, LINEAR PHASE AND POLYPHASE STRUCTURES 19. Draw the direct form implementation of FIR system having difference equation . [N/D – 12 R08] 20. Determine the transversal structure of the system function 	12.	Define – Gibbs Phenomenon $A/M - 11 R08 I M/J - 14 R08 I M/J - 12 F$	R081 [A/M - 10 R08]
 14. How is Kaiser window different from other windows? [N/D - 17 R00] 14. How is Kaiser window different from other windows? [N/D - 07 R04] 15. What is window function? Why is it necessary? 16. Write the equation for Hanning window function. 17. Write the equation for Bartlett window function. 18. Write the procedure for FIR filter design by frequency sampling method. REALIZATION OF FIR FILTERS – TRANSVERSAL, LINEAR PHASE AND POLYPHASE STRUCTURES 19. Draw the direct form implementation of FIR system having difference equation [N/D – 12 R08] 20. Determine the transversal structure of the system function 	13	What are the desirable characteristics of windows? $[N/D - $	-13 R081 [N/D - 11 R08]
 11. How is fulleer window different from other windows? 15. What is window function? Why is it necessary? 16. Write the equation for Hanning window function. 17. Write the equation for Bartlett window function. 18. Write the procedure for FIR filter design by frequency sampling method. REALIZATION OF FIR FILTERS – TRANSVERSAL, LINEAR PHASE AND POLYPHASE STRUCTURES 19. Draw the direct form implementation of FIR system having difference equation . [N/D – 12 R08] 20. Determine the transversal structure of the system function 	14	How is Kaiser window different from other windows?	[N/D - 07R04]
 13. What is which will be included will be included in the equation for Hanning window function. 14. Write the equation for Bartlett window function. 15. Write the equation for Bartlett window function. 16. FREQUENCY SAMPLING METHOD 18. Write the procedure for FIR filter design by frequency sampling method. 18. REALIZATION OF FIR FILTERS – TRANSVERSAL, LINEAR PHASE AND POLYPHASE STRUCTURES 19. Draw the direct form implementation of FIR system having difference equation . [N/D – 12 R08] 20. Determine the transversal structure of the system function 	15	What is window function? Why is it necessary?	
 17. Write the equation for Bartlett window function. 17. Write the equation for Bartlett window function. FREQUENCY SAMPLING METHOD 18. Write the procedure for FIR filter design by frequency sampling method. REALIZATION OF FIR FILTERS – TRANSVERSAL, LINEAR PHASE AND POLYPHASE STRUCTURES 19. Draw the direct form implementation of FIR system having difference equation . [N/D – 12 R08] 20. Determine the transversal structure of the system function 	16	Write the equation for Hanning window function	
 FREQUENCY SAMPLING METHOD 18. Write the procedure for FIR filter design by frequency sampling method. REALIZATION OF FIR FILTERS – TRANSVERSAL, LINEAR PHASE AND POLYPHASE STRUCTURES 19. Draw the direct form implementation of FIR system having difference equation . [N/D – 12 R08] 20. Determine the transversal structure of the system function 	10.	Write the equation for Partlett window function	
FREQUENCY SAMPLING METHOD 18. Write the procedure for FIR filter design by frequency sampling method. REALIZATION OF FIR FILTERS – TRANSVERSAL, LINEAR PHASE AND POLYPHASE STRUCTURES 19. Draw the direct form implementation of FIR system having difference equation . [N/D – 12 R08] 20. Determine the transversal structure of the system function	17.	while the equation for Dartiett whildow function.	
 18. Write the procedure for FIR filter design by frequency sampling method. REALIZATION OF FIR FILTERS – TRANSVERSAL, LINEAR PHASE AND POLYPHASE STRUCTURES 19. Draw the direct form implementation of FIR system having difference equation . [N/D – 12 R08] 20. Determine the transversal structure of the system function	FR	EQUENCY SAMPLING METHOD	
REALIZATION OF FIR FILTERS – TRANSVERSAL, LINEAR PHASE AND POLYPHASE STRUCTURES 19. Draw the direct form implementation of FIR system having difference equation . [N/D – 12 R08] 20. Determine the transversal structure of the system function	18.	Write the procedure for FIR filter design by frequency sampling method.	
STRUCTURES 19. Draw the direct form implementation of FIR system having difference equation . [N/D – 12 R08] 20. Determine the transversal structure of the system function	RE.	<u>ALIZATION OF FIR FILTERS – TRANSVERSAL, LINEAR PHAS</u>	SE AND POLYPHASE
 19. Draw the direct form implementation of FIR system having difference equation [N/D – 12 R08] 20. Determine the transversal structure of the system function 	<u>STI</u>	<u>RUCTURES</u>	
. [N/D – 12 R08] 20. Determine the transversal structure of the system function	19.	Draw the direct form implementation of FIR system having difference equat	tion
20. Determine the transversal structure of the system function			[N/D – 12 R08]
•	20.	Determine the transversal structure of the system function	

.

21. Draw linear phase realization for the system function

.

[N/D - 12 R04]

[N/D - 10 R08]

PART B

SYMMETRIC AND ANTISYMMETRIC FIR FILTERS – LINEAR PHASE FIR FILTERS

1.	Determine	the frequ	ency r	esponse	of	FIR	filter	defined	by
	Calculate the phase delay and group delay.					у.			
							(8) [M/J – 13	3 R08]
2.	Derive the con	dition for linear	phase in F	IR filter.			(8) $[N/D - 09]$	₹R04]
3.	How are the ze	ros of FIR filte	rs located?	Explain in	detail.		(7) [N/D – 13	3 R08]
4.	State and expla	in the propertie	s of FIR fil	lters. State	their imp	ortance.	(8) [M/J – 14	4 R08]
DE	SIGN USING H	IAMMING, H	ANNING A	AND BLA	CKMAN	N WINI	OWS		
5.	Explain the des	signing of FIR f	ilters using	g windows.			(16	5) [A/M – 11	R08]
6.	Design an FIR	filter with the f	ollowing d	esired spec	ifications	, using H	lanning w	indow with	
		-	_						
		_					(1	6) [M/J – 13	R08]
-		1 011							
7.	Design an FIR	low pass filter	having the	following s	pecificat	ions usin	g Hannın	g window.	
				and $N = 7$.			(1	6) [M/J – 12	2 R08]
8	a) The desired	response of a	low nass	filter is				π	π
0.	u) The desired	iesponse of e	10W puss	inter is				π	π
	Determine H(e	e^{j}) for M = 7 u	sing Hamn	ning windo	w.	(8) [A/M	1 - 08 R04	4] [N/D - 09) R04]
	b) Determine th	e magnitude re	sponse of a	n FIR filte	r (M =11)) and sho	w that the	e phase and	group
	delays are co	onstant.					(8	(A/M - 08)	3 R04]
9.	The desired	frequency	response	ofa	low	pass	filter	is given	u bv
		π	π,		.1 (*1.	1	• • •		1
		π	π	Determine	the filte	r coeffic	cients nd	(n). Compu	te the
	coefficients	h(n)ofFIR	filter	using	a rec	tangular	windo	w defined	l by
							(8) $[N/D - 0]$	7 R04]

- 10. A band reject filter of length 7 is required. The lower and upper cutoff frequencies are 3 kHz and 5 kHz respectively. The sampling frequency is 20 kHz. Determine the filter coefficients using Hamming window. Assume the filter to be causal.
 (16) [N/D 08 R04]
- 11. A band pass FIR filter of length 7 is required. The lower and upper cutoff frequencies are 3 kHz and 6 kHz respectively and are intended to be used with the sampling frequency of 24 kHz. Determine the filter coefficients using rectangular window. Consider the filter to be causal.

 $(8) \; [N/D - 10 \; R04] \; [M/J - 07 \; R04]$

12. Compare the characteristics of different types of windows used in the design of FIR filter. (8) [N/D - 10 R04] π

- 13. Design a high pass filter using Blackman window with cutoff frequency of 1.2 radians and N = 7. Realize the obtained transfer function. (8) [A/M - 11 R04]
- 14. Design a FIR low pass digital filter approximating the ideal frequency response

π π π

using Hamming window method with M = 11.

- 15. Design a high pass filter using Hamming window, with a cut-off frequency of 1.2 radians/sec and N = 9. (16) [N/D - 06 R04]
- 16. Design an ideal high pass filter using Hanning window with a frequency response

π π π

(16) [N/D – 10 R08] [N/D – 11 R08]

- 17. Using a rectangular window technique, design a low pass filter with pass band gain of unity gain, cut-off frequency of 1000Hz and working at a sampling frequency of 5 kHz. The length of the impulse response should be 7. (9) [N/D 13 R08]
- 18. Design a digital FIR band- pass filter with lower cut-off frequency 2000 Hz and upper cutoff frequency 3200 Hz using Hamming window of length N = 7. Sampling rate is 10000 Hz.

(10) [N/D - 12 R08]

FREQUENCY SAMPLING METHOD

Assume N = 11.

- 19. Explain the design procedure of FIR filter using frequency sampling method.
- (16) [M/J 14 R08] [M/J 13 R08] 20. Explain the frequency sampling method of FIR filter design.

(8) [M/J – 12 R08] [N/D – 09 R04][N/D – 07 R04][A/M – 11 R04]

21. Determine the coefficients h(n) of a linear phase FIR filter of length M = 15 which has a symmetric unit sample response and a frequency response that satisfies the condition

(10) [N/D - 10 R08]

22. Design an FIR low pass digital filter by using the frequency sampling method for the following specifications Cutoff frequency = 1500Hz Sampling frequency = 15000Hz Order of the filter: N = 10Filter length required L = N + 1 = 11. (16) [N/D - 12 R08]

(16) [N/D - 12 R04]

<u>REALIZATION OF FIR FILTERS – TRANSVERSAL, LINEAR PHASE AND POLYPHASE</u> <u>STRUCTURES</u>

23.	Determine	the	Direct	form	realization	for	the	system	function
								(8) [M/J	– 12 R08]
24.	Realize the sys	stem fu	inction			by linear	r phase F	FIR structure.	
								(16) [A/M	– 11 R08]
25.	Obtain the line	ear pha	se realizatio	on of the sy	stem function				
								(6) [N/D	– 10 R08]
26.	Explain linear	phase	FIR structur	res. What a	re the advanta	ges of su	ch struct	ures?	
								(8) [M/J ·	– 14 R08]
27.	Consider an F	ir lattic	e filter with	coefficien	ts ;		;	. Dete	rmine the
	FIR filter coef	ficient	s for the dire	ect form str	ructure.			(16) [N/D	– 13 R08]
28.	Explain with r	neat ske	etches the in	nplementat	ion of FIR filt	ers in the	:		
	(1)) E	Direct form						
	(2)	L	attice form					(6) [N/D -	- 12 R08]

UNIT IV – FINITE WORD LENGTH EFFECTS PART A

FIXED POINT AND FLOATING POINT NUMBER REPRESENTATIONS – COMPARISON

1.	What are the advantages of floating point arithmetic?		[N/D - 11 R08]
2.	What is meant by fixed point arithmetic? Write an ex	ample.	[A/M - 11 R08]
3.	Distinguish between fixed point arithmetic and floating	ng point arithmetic.	[N/D - 10 R04]
4.	Represent the fraction $(-9/32)$ in signed magnitude	and in two's complement for	form using 6 bits. $[N/D - 08 R04]$
5.	Represent 15.75 using fixed point and floating point a	rithmetic.	[A/M – 11 R04]
6.	What are the different types of arithmetic operations	used in digital system?	
7.	What is meant by block floating point representation?	What are its advantages?	
8.	How are multiplication and addition carried out in flo	ating point arithmetic?	
9.	What is saturation arithmetic?		
10.	Plot the truncation error for sign magnitude and two's	complement numbers.	
11.	Represent the fraction $7/8$ and $-7/8$ in sign magnitude format.	;, 2's complement and 1's co	mplement
TR	UNCATION AND ROUNDING ERRORS		
12.	Compare truncation with rounding errors.		[M/J – 12 R08]
13.	What is meant by truncation?	1 1	[N/D - 10 R08]
14. 15.	Why is rounding preferred over truncation in realizing What is meant by rounding?	g a digital filter?	[M/J - 0/R01]
QU	ANTIZATION NOISE – DERIVATION FOR QUA	NTIZATION NOISE POV	VER
16.	What are the two types of quantization employed in a	digital system?	[M/J - 13 R08]
17.	What are the three types of quantization error that occ	cur in a digital system?	[A/M – 08 R04]
18	. List out the factors degrading the performance of	of a finite word length dig	gital filter. [N/D
10			- 08 R04]
19.	What is meant by quantization step size?		
$\frac{CO}{OV}$	EFFICIENT QUANTIZATION ERROR – PRODU	JCT QUANTIZATION EF	RROR
$\frac{0\mathbf{v}}{20}$	What is meant by overflow oscillation?	[N/D 11 P08	$1[\mathbf{M}/\mathbf{I} 12 \mathbf{P}(8)]$
20. 21	What is product quantization error?	[M/L - 14 R08]	[N/D - 10 R08]
21.	What is coefficient quantization error? What are its e	[WI/J = 14 K00]	[10/D - 10 K00]
22.	What is coefficient quantization error? What are its c		N/D = 13 R081
23.	what do you understand by input quantization error?		[10/D - 13 K00]
LIN	MIT CYCLE OSCILLATIONS DUE TO PROD	UCT ROUNDOFF AND	OVERFLOW
<u>ER</u>	<u>RORS</u>		
24.	Define – Zero input Limit Cycle Oscillation [N/	D = 12 K08 [A/M = 12 K08	$S_{\rm J}[M/J - 13 \text{ K08}]$
23. 26	Further the meaning of limit avala oscillator		[N/D - 12 K00]
20. 27	Explain the methods used to provent overflow	rı	[A/WI = 11 KU8]
21.	State the memous used to prevent overnow.	Į	MD = 13 KU8
SIC	SNAL SCALING		
28.	State the need for scaling in filter implementation.		[M/J - 14 R08]

Department of Electronics and Communication Engineering

PART B

FIXED POINT AND FLOATING POINT NUMBER REPRESENTATIONS - COMPARISON

- Represent the following numbers in floating point format with five bits in mantissa and three bits in exponent.
 (8) [M/J 13 R08]
 - a) 710
 - b) 0.25₁₀
 - c) 110
 - d) 0.2510
- 2. Compare floating point arithmetic with fixed point arithmetic.(4) [N/D 11 R08] [M/J 12 R08]

TRUNCATION AND ROUNDING ERRORS

3.	Discuss the various common methods of quantization.	(8)[N/D – 13 R08]
4.	Explain the errors due to rounding and truncation.	[N/D - 10 R08]
	Explain the problems due to round off and truncation in	n converting a decimal
	fraction.	(8) [N/D – 10 R08]
	Compare the truncation and rounding errors using fixed point and floati	ng point representation.
		(8) [M/J – 14 R08]

QUANTIZATION NOISE – DERIVATION FOR QUANTIZATION NOISE POWER

5. What is quantization noise? Derive the expression for quantization noise power.

(12) [M/J - 12 R08]What is meant by quantization? Derive the expression for the quantization error. [N/D - 12 R08]Explain the quantization noise and derive the expression for finding quantization noise power.

		(8) $[N/D - 10 \text{ R08}]$
6.	Derive the signal to quantization noise ratio of A/D converter.	(6) [M/J - 14 R08]
7.	How is the steady state output noise variance calculated?	(8) [N/D - 10 R08]

8. Determine the steady state output noise variance due to quantization of input, for the first order filter (16)

<u>COEFFICIENT</u> <u>QUANTIZATION</u> <u>ERROR</u> – <u>PRODUCT</u> <u>QUANTIZATION</u> <u>ERROR</u> <u>OVERFLOW</u> <u>ERROR</u> <u>ROUNDOFF</u> <u>NOISE</u> <u>POWER</u> <u>LIMIT</u> <u>CYCLE</u> <u>OSCILLATIONS</u> <u>DUE</u> <u>TO PRODUCT</u> <u>ROUNDOFF</u> <u>AND</u> <u>OVERFLOW</u> <u>ERRORS</u>

9. Consider a second order IIR filter with ________. Explain the effect of quantization on pole locations of the system when realized in direct form and in cascade form. Assume b = 3 bits. (10) [N/D - 11 R08]
10. Explain coefficient quantization in IIR filter. (16) [N/D - 12 R08]
11. Draw the product quantization noise model of second order IIR system. (8) [M/J - 13 R08]
12. Find the output round-off noise power for the system having transfer function H(z) = ______ which is realized in direct and in cascade forms.

Assume word length is 4 bits. (8)

ribe the effect of product quantization in cascaded IIR sections, using	13. Desc g fixed point arithmetic. (8) [N/D – 10 R08]		
14. How is reduction of product round-off error achieved in digital filters?	(8)		
(8)[M/J – 1	4 R08] [A/M –11 R08]		
15. Explain the limit cycle oscillations due to product round off and overflow $(16) [N/D - 1]$	errors. 1 R08] [N/D – 10 R08]		
16. How can limit cycle oscillations be prevented? Explain.	(8) [N/D – 12 R08]		
17. Determine the dead band of the system	. Assume 8		
bits are used for signal representation.	(8) [M/J - 13 R08]		
18. Explain the characteristics of zero input limit cycle oscillation, in the syste	of 2 bits. Determine the		
dead band of the filter	(8) [A/M - 11 R08]		
19. Explain the characteristics of a limit cycle oscillation, with respect to described by the difference equation;and	o the system		
20 Describe the quantization in floating point realization of IIR digital filters	(16) [N/D –13 R08]		
. Explain the finite word length effects in FIR digital filters. $(8)[N/D - 13 R08]$ Explain the round off noise in direct form realization of a linear phase FIR filter with relevant			
diagrams.	(8) [A/M – 11 R08]		
Explain the effects of coefficient quantization in FIR filters. $(8)[M/J - 1]$	4 R08] [A/M –11 R08]		
22. Explain the following	(16) [M/J – 12 R08]		
a) Coefficient quantization error			
b) Product quantization error			

- c) Signal scaling
- d) Truncation and Rounding.

SIGNAL SCALING

23. How is signal scaling used to prevent overflow limit cycle in the digital filter implementation? Explain with an example.
(8) [N/D - 11 R08] [N/D - 12 R08] [M/J - 13 R08]

UNIT V – MULTI RATE SIGNAL PROCESSING PART A

INTRODUCTION TO MULTIRATE SIGNAL PROCESSING

1.	What is multirate signal processing?	[M/J - 14 R08] [N/D - 11 R08]
2.	List out the applications of DSP.	[A/M – 11 R08]
3.	What is the need for multirate signal processing?	
DE	CIMATION-INTERPOLATION	
4.	What is anti- imaging filter?	[M/J – 13 R08]
5.	What is decimation?	[N/D - 12 R08] [N/D - 10 R08]
6.	Write the expression for the following multirate system.	[N/D – 12 R08]
7.	What is meant by down sampling and up sampling?	[N/D – 11 R08]
8.	When is a signal decimated?	[A/M - 08 R01]
9.	What is meant by interpolation?	[A/M - 08 R01]
10.	Write the input output relationship for a decimator.	
11.	Write the input output relationship for an interpolator.	
12.	What is meant by aliasing?	
13.	How can aliasing be avoided?	
14.	For the signal $f(t) = 5 \cos (5000\pi t) + \sin^2 (3000\pi t)$, determine th for recovery without aliasing.	e minimum sampling rate
15.	Differentiate between anti-aliasing and anti-imaging filters.	
16.	How is sampling rate converted by a factor I/D?	
17.	What is the need for decimation?	[M/J – 14 R08]
<u>PO</u> DE	LYPHASE IMPLEMENTATION OF FIR FILTERS FOR IN CIMATOR	FERPOLATOR AND
10		
18.	What are called polyphase filters?	[M/J - 12 R08]
19.	Compare efficient transversal structure with direct form structure	•
20.	List out the methods of designing FIR decimator and interpolator	
MU	ULTISTAGE IMPLEMENTATION OF SAMPLING RATE C	<u>ONVERSION</u>
21.	Draw the schematic for sampling rate conversion by a factor I/D. sequence.	Draw the spectrum of output [N/D – 05 R01]
22.	Give the steps in multistage sampling rate converter design.	[N/D - 13 R08]
23.	What is meant by sampling rate conversion?	
AP	PLICATIONS OF MULTIRATE SIGNAL PROCESSING	
24.	List out the applications of multirate DSP. $[N/D - 13]$ R	08][M/J – 12 R08][M/J – 13 R08]
25.	What is echo cancellation?	[A/M – 11 R08]
26.	What is sub-band coding?	[N/D - 10 R08]
27.	List out the types of frequency domain coding.	[M/J - 08 R01]
28.	What is Quadrature Mirror Filter (QMF)?	[N/D - 03 R01]

29. What are the sections of QMF?

PART B

DECIMATION-INTERPOLATION

- A signal x(n) is given by x(n) = {0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, ...} (8) [M/J 13 R08]
 a) Obtain the decimated signal with a factor of 2.
 - b) Obtain the interpolated signal with a factor of 2.
- 2. How does the sampling rate increase by an integer factor I? Derive the input-output relationship in both time and frequency domains. (16) [M/J 13 R08]
- 3. For the multirate system shown in figure, write the relation between x(n) and y(n).

(16) [N/D – 11 R08]

(10) [M/J - 14 R08]

(16) [N/D - 11 R08]

- 4. Explain the concepts of decimation and interpolation of discrete time signals.
- (16) [A/M 11 R08] [M/J 12 R08]
 5. a) Explain sampling rate conversion by a rational factor and derive input-output relation in both time and frequency domain.
 (8) [N/D 12 R08]

b) Explain the design of a narrow band filter using sampling rate conversion. (8) [N/D - 12 R08]

- 6. Write notes on the following:
 - i. Over sampling A/D converter
 - ii. Over sampling D/A converter.

POLYPHASE IMPLEMENTATION OF FIR FILTERS FOR INTERPOLATOR AND DECIMATOR

- 7. Explain the efficient transversal structure.
- 8. Explain the polyphase structure of decimator and interpolator.

 $(16) \left[N/D - 13 \ R08 \right] \left[M/J - 14 \ R08 \right] \left[N/D - 10 \ R08 \right]$

MULTISTAGE IMPLEMENTATION OF SAMPLING RATE CONVERSION

9. Explain the multistage implementation of sampling rate conversion with a block diagram.

(8) [M/J – 12 R08][M/J – 13 R08][N/D – 13 R08]

APPLICATIONS OF MULTIRATE SIGNAL PROCESSING

10. Explain the procedure to implement digital filter bank in multirate signal processing.

- (16) [N/D 10 R08]11. Explain sub-band coding in detail.
 (8) [N/D 12 R08][M/J 12 R08]
- 12. List out the applications of multirate signal processing. (6) [M/J 14 R08][A/M 11 R08]
- 13. How is DSP used for speech processing? (8) [A/M 11 R08]
- 14. How can various sound effects be generated using DSP? Explain in detail. (10) [A/M 11 R08]

15. Explain the implementation steps in speech coding using transform coding.

(8)[N/D - 13 R08]