DHANALAKSHMI SRINIVASAN
 COLLEGE OF ENGINEERING AND TECHNOLOGY MAMALLAPURAM, CHENNAI

DEPARTMENT OF AERONAUTICAL ENGINEERING

COURSE FILE

COURSE CODE	$:$	C303
SUBJECT CODE	$:$	AE8503 (Regulation 2017)
SUBJECT NAME	$:$	AERODYNAMICS - II
YEAR / SEMESTER	$:$	III / V

QUESTION BANK

Subject Code \& Name : AE8503 - Aerodyanmics II
Year / Sem :III / VI

S.No	Question	BT Level
1	What is isentropic and isothermal compressibility	Understanding
2	Define characteristic Mach number and what is the maximum value of it	Remembering
3	Distinguish between thermally perfect gas and calorically perfect gas?	Remembering
4	Why is a convergent divergent nozzle required to expand a flow from stagnationcondition to supersonic velocity	Remembering
5	Explain the phenomenon of choking in a nozzle	Remembering
6	Define nozzle efficiency in terms of enthalpies?	Remembering
7	Write the one-dimensional energy equation for an adiabatic compressible steadyflow	Remembering
8	Write down the Bernoulli's equation for compressible flow	Remembering
9	Write the Area Mach number relation?	Remembering
10	Derive the relation ${ }^{\underline{-0}}=\left[1+\left(\frac{\square-1}{}\right)\right] \square^{2}$	Understanding
	Part B	
11	Derive an expression which relates Area-Velocity-Mach number. And discuss the important information behind the relationship	Apply
12	Starting from energy equation for adiabatic flow derive a relation between flow Mach number and characteristic Mach number	Apply
13	Describe the performance of nozzles under various back pressures	Understanding
14	Air flows isentropically through a convergent Divergent nozzle nozzle of inlet area 12 cm 2 at a rate of $0.7 \mathrm{~kg} / \mathrm{s}$. The conditions at inlet and exit of the nozzle are $8 \mathrm{~kg} / \mathrm{m} 3$ and 400 K and $4 \mathrm{~kg} / \mathrm{m} 3$ and 300 K respectively. Find the cross sectional area,pressure and Mach number at the exit	Apply
15	Air is expanded through a convergent Divergent nozzle from a large reservoir in which the pressure and temperature are 600 kPa and $40^{\circ} \mathrm{C}$, respectively. The design back pressure is 100 kPa . Find the ratio of the nozzle exit area to the nozzle throat area, (i) the discharge velocity from the nozzle under design (ii) considerations (iii) At what back pressure will there be a normal shock at the exit plane of the	Apply

	nozzle	
16	Air flows through a nozzle which has inlet area of 10 cm 2 . If the air has a velocity of $80 \mathrm{~m} / \mathrm{s}$, a temperature of $28^{\circ} \mathrm{C}$ and a pressure of 700 kPa at the inlet section and a pressure of 250 kPa at the exit, find the mass flow rate through the nozzle and assuming one dimensional isentropic flow the velocity at the exit section of the nozzle	Apply
17	Consider adiabatic air flow through a duct. At a certain section of the duct, the flow area is 0.2 m 2 , the pressure is 80 kPa , the temperature is $5^{\circ} \mathrm{C}$ and the velocity is $200 \mathrm{~m} / \mathrm{s}$, if at this section the duct area is changing at a rate of $0.3 \mathrm{~m} 2 / \mathrm{m}$. find $\mathrm{dp} / \mathrm{dx}, \mathrm{dV} / \mathrm{dx}$ and $\mathrm{d} \rho / \mathrm{dx}$.Assuming incompressible floe and taking compressibility into account.	Apply
18	What is mean by De-Laval nozzle? Derive the relation between Area and Mach number	Apply
19	A De Laval Nozzle has to be designed for an exit Mach number of 1.5 with exit diameter of 200 mm . Find the ratio of throat area to exit area necessary. The reservoir conditions are given as $\mathrm{P} 0=1 \mathrm{~atm} ; \mathrm{T} 0=$ 200C. Find also the maximum mass flow rate through the nozzle. What will be the exit pressure and temperature	Apply
20	Air flows through a duct. The pressure and temperature at station 1 are $\mathrm{P} 1=0.7 \mathrm{~atm}$ and $\mathrm{T} 1=300 \mathrm{C}$, respectively. At a second station, the pressure is 0.5 atm . Calculate the temperature and density at the second station. Assume the flow to be isentropic	Apply
	Unit II	
1	Explain why shocks cannot occur in subsonic flows	Remembering
2	Explain zone of action and zone of silence for a body moving at a speed of sound?	Remembering
3	What is the need for a correction to the Pitot static tube readings in supersonic flowand write Rayleigh supersonic Pitot formula?	Understanding
4	How is flow over a cone different from flow over a wedge?	Remembering
5	Give the oblique shock relation in terms of flow angle and wave angle	Understanding
6	What is shock polar? Draw the shock polar for different Mach numbers?	Remembering
7	Define pressure turning angle and Hodograph Plane?	Remembering
8	Define the strength of a shock wave? Explain the shocks of vanishing strength?	Remembering
	Part B	
9	Derive Rankine-Hugonoit equation pressure density relationship for the shock wave and explain its significance	Understanding
10	Derive Prandtl relation for normal shock and explain its significance	Understanding
11	A shock wave across which the pressure ratio is 1.25 moving into still air at a pressure of 100 kPa and a temperature of $15^{\circ} \mathrm{C}$. Find the velocity, pressure, temperature of the air behind the shock wave	Apply
12	Air flow at Mach 4 and pressure of $105 \mathrm{~N} / \mathrm{m} 2$ is turned abruptly by a wall into the flow with a turning angle of $20^{\circ} \mathrm{C}$ as shown in the figure. If the shock is reflected by another wall determine the flow properties M and p downstream of the reflected shock.	Apply

13	A supersonic flow is expanded through a second convex turn of angle 10° as shown in the figure. Determine the downstream Mach number, pressure, temperature and the angle of second fan	Apply
14	Derive $\theta-\beta-\mathrm{M}$ relationship for oblique shock and define the strong and weak solutions	Understanding
15	A uniform supersonic air stream with upstream Mach number of 3, static pressure and static temperature of 1 atm and 300 K respectively encounters a compression corner which deflects the stream by an angle of 15°, calculate downstream static pressure and temperature, total pressure and temperature and Mach number	Apply
16	Consider the intersection of two shocks of opposite families as sketched in the figure for $\mathrm{M} 1=3, \mathrm{P} 1=1 \mathrm{~atm}, \theta 2=20^{\circ}$ and $\theta 3=15^{\circ}$. Calculate the Mach number and pressure in region 4 and 4^{\prime}. And also find the flow direction behind the refracted shocks	Apply
17	A normal shock moves in a constant area tube as shown in figure. In region $1, \mathrm{~V} 1=100 \mathrm{~m} / \mathrm{s}, \mathrm{T} 1=300 \mathrm{C}$ and $\mathrm{P} 1=0.7 \mathrm{~atm}$. Shock speed CS with respect to a fixed coordinate system is $600 \mathrm{~m} / \mathrm{s}$. Find fluid properties in region 2	Apply
18	A shock wave across which the pressure ratio is 1.52 moving into still air at a pressure of 150 kPa and a temperature of $25^{\circ} \mathrm{C}$. Find the velocity, pressure, temperature of the air behind the shock wave	Apply
	Unit 3	
1	With a neat sketch, illustrate Prandtl Meyer expansion round a convex corner	Understanding
2	Define Mach Reflection and regular reflection?	Remembering
3	Can we use the method of characteristics to determine the contour of a	Remembering

	supersonic nozzle? How	
4	Differentiate like reflection and unlike reflection	Remembering
5	Define characteristic lines and limiting characteristics	Remembering
6	What are right running and left running waves in supersonic flow?	Remembering
7	Show the heating and cooling processes in a Fanno curve for subsonic and supersonicflow	Remembering
8	Find out the length of the pipe for fanno flow, if the Mach number changes from 2.8at the entry to 1.0 at the exit. Take the friction factor for the pipe surface to be 0.0025 ?	Understanding
9	Bring out two important differences between Rayleigh Flow and Fanno Flow?	Remembering
10	Distinguish between mach lines and compression waves?	Remembering
	Part B	
11	Air at Mach 2 passes over two compression corners of angles 7° and θ as shown in the figure. Determine the value of θ up to which the second shock will remain attached	Apply
12	For the double wedge shown in the figure, calculate the flow Mach numbers at $2,2^{\prime}, 3,3^{\prime}$ and 4 using shock expansion theory	Apply
13	Consider an infinity thin flat plate at 5° angle of attack in a Mach 2.6 freestream. Calculate the lift and drag coefficients using shock expansion theory	Apply
14	For the flow over half - diamond wedge shown in the figure, find the inclinations of shock and expansion wave and the pressure distribution	Apply
15	Explain the design procedure of Convergent - Divergent nozzle using the Method of Characteristics	Understanding
16	Derive and explain Prandtl-Meyer function of the expansion wave	Understanding
17	Air flows through a constant area duct whose walls are kept at a low temperature. The air enters the pipe at a Mach number of 0.52 , a pressure of 200 kPa , and a temperature of $350^{\circ} \mathrm{C}$. The rate of heat transfer from the air to the walls of pipe is estimated to be $400 \mathrm{~kJ} / \mathrm{kg}$ of	Apply

	air. Find the Mach number, temperature and pressure at the exit pipe.Assume that the flow is steady, that the effects of wall friction are negligible and that the air behaves as a perfect gas	
18	Air flows of a pipe with diameter 0.3m at a rate of 1000m3 per minute at a pressure and temperature of 150 kPa and 293 K respectively. If the pipe is 50m long, find the exit Mach number, pressure and temperature at the inlet. Assuming f $=0.005$	Apply
19	Write short notes on (i) \quadSupersonic flow over a wedge (ii) Weak Oblique shocks (iii) Supersonic Compression Supersonic Expansion by Turning	Understanding
20	Consider an infinity thin flat plate at 70 angle of attack in a Mach 2.8 freestream. Calculate the lift and drag coefficients using shock expansion theory	Apply
	Unit-4 Part A	Rer

17	A 2D wing profile shown in the figure, is place in a stream of Mach number 2.5at an incidence of 2°. Using linearized theory, calculate CL and CD	Apply
18	Using linearized theory, calculate the lift and drag coefficients for a flat plate at a 7° angle of attack in a Mach 2.5 flow	Apply
19	A thin wing can be modelled as a 1 m wide flat plate set an angle of 5° to the upstream flow, if this wing is placed in a flow with a Mach number of 2.5 and static pressure of 75 kPa , find using linearized theory the pressure on the upper and lower surface of the airfoil and lift and drag per meter span	Apply
	Unit 5 Part A	
1	Why is a converging diverging passage required to go from subsonic to supersonicflow	Remembering
2	Define characteristic Mach number and what is the maximum value of it?	Remembering
3	Define hodograph and pressure turning angle	Remembering
4	Define shock polar? Sketch the shape of shock polar for $\square_{1}{ }^{*}=2.45$	Understanding
5	What is meant by mach reflection	Remembering
6	What is meant by expansion hodograph	Remembering
7	An unsymmetrical diamond airfoil at zero angle of attack is kept in supersonic flow.Sketch the wave pattern and the streamlines	Understanding
8	By linearised theory, what are the expressions for the lift and drag coefficients for asymmetric bi convex profile?	Remembering
9	What is the effect of sweep back on compressibility	Remembering
10	Why is that airfoil designed for a high critical mach number must have a thin profile	Remembering
	Part B	
11	What is mean by transonic area rule? With neat sketch, explain in detail on transonic area rule	Understanding
12	What is mean by swept back wing? With neat sketches explain in detail about characteristics, advantages disadvantages of the effect of sweep back wing at supersonic and subsonic speeds	Understanding
13	With neat sketches explain in detail about upper and lower Critical Mach number	Understanding
14	Explain in detail about the effect of thickness, camber and aspect ratio on characteristics on wings	Understanding
15	Explain in detail about drag divergence Mach numbers	Understanding
16	With neat sketches, explain in detail about the shock induced separation	Understanding
17	Explain in detail about the reflection and interaction of the shock waves	Understanding

